Commissioning the KamLAND Experiment

Nikolai Tolich
Stanford University
The KamLAND Collaboration

G.A. Horton-Smith, R.D. McKeown, J. Ritter, B. Tipton, P. Vogel

California Institute of Technology
C.E. Lane

Drexel University
Y-F. Wang

IHEP, Beijing
B.E. Berger, Y-D. Chan, D.A. Dwyer, S.J. Freedman, Y. Fu, B.K. Fujikawa, K.T. Lesko, K-B. Luk,

LBNL/UC Berkeley
S. Dazeley, S. Hatakeyama, M. Murakami, R.C. Svoboda

Louisiana State University
J. Detwiler, G. Gratta, N. Tolich, Y. Uchida

Stanford University
T. Iwamoto, T. Kawashima, H. Kinosita, M. Koga, T. Maeda, T. Mitsui, M. Motoki, K. Nakajima, H. Ogawa, K. Oki,

Tohoku University

TUNL
J. Busenitz, Z. Djurcic, K. McKinny, D-M. Mei, A. Piepke, E. Yakushev

University of Alabama
P. Gorham, J. Learned, J. Maricic, S. Matsuno, S. Pakvasa

University of Hawaii
B.D. Dieterle

University of New Mexico
M. Batygov, W. Bugg, H. Cohn, Y. Efremenko, Y. Kamyshkov, Y. Nakamura

University of Tennessee

April 2002

APS Meeting
Solar LMA solution within reach

- KamLAND (Kamioka Liquid-scintillator AntiNeutrino Detector)
- Liquid-scintillator allows us to probe lower neutrino energies than water Cherenkov detectors
- KamLAND is studying the disappearance of electron antineutrinos produced in nuclear reactors
- The reactor baseline is limited with 85.3% of the signal coming from reactors with a baseline of 140 km to 344 km giving an expected Δm^2 sensitivity of 7×10^{-6} eV2
The Detector

1km Overburden

Electronics hut

H$_2$O Cerenkov veto counter

225 20" PMTs

Steel sphere

Buffer oil

1kton Liquid-scintillator

PMTs

1325 17" fast
554 20" large
34% coverage

Acrylic Sphere

Ropes

Balloon

PMTs

1325 17" fast
554 20" large
34% coverage

April 2002 APS Meeting
The LBL Electronics

- Waveforms for each PMT are recorded using Analogue Transient Waveform Digitizers (ATWDs) Allowing multi p.e. resolution
- The ATWDs are self launching with a threshold ~1/3 p.e.
- Each PMT is connected to 2 ATWDs Reducing deadtime
- Each ATWD has 3 gains (20, 4, 0.5) Allowing a dynamic range of ~1mV to ~1V
- There are 128 samples per waveform with a sample time of 1.5ns
The Trigger

- The trigger receives the number of PMTs above threshold on each FEE board every 25ns ~4 Gbytes/s

- Based on the PMT hit pattern a capture command is sent to the LBL and MACRO electronics within 200 ns
 - Delayed trigger > ~0.5MeV less than 1ms after Prompt
 - Pre-scaled trigger > ~0.5MeV for 0.1ms every second
 - Prompt trigger > ~0.8MeV

- Non physics triggers
 - Muon events all PMTs fire
 - Supernova “burst trigger”
 - 48 events > 4MeV in 1s
KamLAND uses KINOKO for DAQ

- KINOKO is a Linux-based DAQ system developed for KamLAND
- Each VME crate is connected to a separate front end PC running a KINOKO process
- The data from each front end PC is sent to a control PC
- The control PC is responsible for setting the run conditions, recording, and displaying the data
Gain Calibration

- Gain calibration has been done at 1p.e. level with peripheral LEDs
- Very good quality single p.e. peak

- For gain calibration at higher p.e.'s we used a nitrogen laser
- The laser intensity was controlled within 15% using different filters
Timing Calibration

Timing calibration was done using a dye laser $\lambda = 500\text{nm}$.

The liquid scintillator is transparent at 500nm.

This correction is waveform analysis dependent, we may be able to do better.
Energy Calibration

60Co 2.505 MeV $\gamma+\gamma$ source

- So far two sources have been placed in the detector, 60Co & 65Zn
- The light yield is very high 241 p.e./MeV

65Zn 1.115 MeV γ source

- Soon we will deploy a 137Cs 0.662 MeV γ source and a AmBe 4.4 MeV neutron source
Following muons we get neutron events, these allow us to calibrate the energy for neutrons.

The energy of this peak is consistent with a 2.2 MeV n-capture.

The capture time of 189±19 μs is consistent with the expected value of 180 μs.

April 2002 APS Meeting
Data is now coming in smoothly...

stay tuned for results...

April 2002 APS Meeting