修士論文

B中間子のDK 崩壊における CPの破れの研究

東北大学大学院理学研究科 物理学専攻

草野 智則

平成20年

概要

この論文では B 中間子の崩壊 B⁻ → D₁K⁻ の解析について述べる。D₁ は CP-even の固有 状態であり、K⁺K⁻、π⁺π⁻ を用いて再構成される。この崩壊は CP 非保存角 ϕ_3 の測定に重 要な情報を与える。データサンプルは、Belle 実験で収集された 388×10⁶ の B^Bペアを用い た。シグナルのイベント数を導出した結果、CP 非対称度 $A_1 \equiv (\Gamma(B^- \to D_1K^-) - \Gamma(B^+ \to D_1K^+))/(\Gamma(B^- \to D_1K^-) + \Gamma(B^+ \to D_1K^+)),$ および崩壊分岐比の比 $\mathcal{R}_1 \equiv \mathcal{R}^{D_1}/\mathcal{R}^{D^0},$ $\mathcal{R}^{D_1} \equiv (\Gamma(B^- \to D_1K^-) + \Gamma(B^+ \to D_1K^+))/(\Gamma(B^- \to D_1\pi^-) + \Gamma(B^+ \to D_1\pi^+)),$ $\mathcal{R}^{D^0} \equiv (\Gamma(B^- \to D^0K^-) + \Gamma(B^+ \to D^0K^+))/(\Gamma(B^- \to D^0\pi^-) + \Gamma(B^+ \to D^0\pi^+))$ はそれ $\mathcal{E}_1 A_1 = 0.24 \pm 0.08 (\text{stat.}) \pm 0.02 (\text{syst.}), \mathcal{R}_1 = 1.27 \pm 0.17 (\text{stat.}) \pm 0.07 (\text{syst.}) と求まった。$

目 次

第 1章	序章	7
1.1	CKM 機構	7
	1.1.1 CKM 行列	7
	1.1.2 ユニタリティー三角形	8
1.2	CP 非対称性	10
	1.2.1 $B^0 - \bar{B}^0$ 混合	10
	1.2.2 崩壊分岐比の導出	11
	1.2.3 直接的な CP の破れ	12
1.3	ϕ_3 の測定	12
	1.3.1 GLW 法	12
	1.3.2 ADS法	15
笛っ音		10
第4早 ○1	Delle 天歌	10
2.1	RERD 加速価 · · · · · · · · · · · · · · · · · · ·	10
	2.1.1 巴介取同 $0/\nu$ ン / 1	10
	2.1.2 エイルイーの升内你住	$\frac{20}{91}$
<u> </u>	2.1.5 午候又左方	$\frac{21}{91}$
2.2	Dente 俠田冊	$\frac{21}{91}$
	2.2.1 シリコン 園天 点 夜山田・5 VD	21 22
	2.2.2 「八「)」、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	$\frac{23}{27}$
	2.2.5 $(-)$ $(-$	$\frac{21}{27}$
	2.2.4 π 所同次 $\gamma \phi \gamma$ 101	$\frac{21}{20}$
	2.2.6 电磁ス = // / / EEE · · · · · · · · · · · · · ·	30
	2.2.0 / CLA+ / · · · · · · · · · · · · · · · · · ·	30
	2.2.1 Π_L 中国 μ (公司 福 · REM · · · · · · · · · · · · · · · · · · ·	33
	2.2.0 $L = 2.2.0$ $L = 2.2.$	33
2.3	モンテカルロ	33
2.9 2.4	$K \ge \pi の識別: PID$	35
第3章	$\mathrm{B}^- ightarrow \mathrm{D}_1 \mathrm{K}^-$ の解析	37
3.1	データサンプル	37
3.2	イベントの再構成	37
3.3	イベントの選択	37
	3.3.1 荷電粒子の飛跡	37

謝辞		67
第5章	結論	66
第4章 4.1 4.2	結果 崩壊分岐比の比 <i>R</i> ₁	63 63 65
3.5	CP 非対称度 A ₁ の測定	60
	3.4.1 $\mathbf{B}^- \to \mathbf{D}^0 \pi^- \mathcal{O}\mathcal{I}\mathcal{I}\mathcal{Y}$ \mathbb{P}	$\frac{51}{55}$
3.4	シグナルのイベント数の導出	51
	3.3.7 ダリッツ平面を用いた除去領域の導入	48
	3.3.6 ピーキングバックグラウンド	40 45
	$3.3.4$ $4 \pi^{*} / 4 y y / 4 y y - 1 y r$	- 39 - 40
	3.3.3 \mathbf{B}^- の冉構成	38
	3.3.2 \mathbf{D}^{0} の再構成	38

表目次

2.1	KEKB マシンパラメータ	20
2.2	各検出器の役割	22
2.3	ルミノシティ10 ³⁴ cm ⁻² s ⁻¹ における各物理過程の反応断面積とトリガーレー	
	ト。バーバー散乱と光子対生成は反応断面積が大きいので、トリガーレート	
	を1/100にしている。	33
3.1	各崩壊過程に対するコンティニュウムイベントの除去。シグナルの保持率は	
	コンティニュウムイベントの除去前後でのイベント数の比であり、バックグ	
	ラウンドの除去率は1 –(コンティニュウムイベントの除去前後でのイベン	
	ト数の比) である。	45
3.2	ダリッツ平面による除去領域の導入......................	51
3.3	$B^- o D^0 \pi^-$ 過程のフィット結果から求めたイベント数と崩壊分岐比	54
3.4	$B^- o D^0 K^-$ 過程のフィット結果から求めたイベント数と崩壊分岐比	57
3.5	Dπ フィードのイベント数と崩壊分岐比	57
3.6	イベント数と CP 非対称度。統計誤差をともに表示した。	60
4.1	各崩壊過程の検出効率、シグナル数、B ⁻ のイベント数、CP 非対称度...	63
4.2	\mathcal{R}_1 の系統誤差	65
4.3	\mathcal{A}_1 の系統誤差	65

図目次

1.1	ユニタリティー三角形
1.2	$B^- \to D^0 K^-, D^0 \to K^- K^+ \text{ostronom} M^- K^- M^- K^-$
1.3	$B^- \to \bar{D}^0 K^-, \ \bar{D}^0 \to K^- K^+ $ のダイアグラム 14
1.4	(1.54)、(1.55)の振幅の関係 14
1.5	(1.54)、(1.55)の振幅の関係 17
2.1	KEKB 加速器の全体像 19
2.2	KEKB、PEPIIのピークルミノシティ 21
2.3	KEKB の積分ルミノシティ 21
2.4	Belle 検出器の全体像
2.5	Belle 検出器でイベントが測定される様子
2.6	SVD1の全体像 24
2.7	SVD2の断面図
2.8	SVD2の側面図 24
2.9	dE/dx と運動量の関係
2.10	CDCの全体像 26
2.11	ドリフトセル
2.12	垂直方向運動量 <i>pt</i> の分解能 27
2.13	π に対する dE/dx
2.14	ACC、TOFの全体像 28
2.15	バレル部の ACC モジュール 28
2.16	エンドキャップ部の ACC モジュール 28
2.17	ファインメッシュPMT
2.18	磁場中におけるファインメッシュPMT のゲインの変化 28
2.19	TOF の全体像
2.20	TOFの時間分解能 30
2.21	運動量 1.2GeV 以下での TOF による粒子の識別 30
2.22	ECL の全体像
2.23	ECL カウンター
2.24	KLMの全体像と有効な角度領域
2.25	KLM の層構造 32
2.26	バレル部の RPC モジュール 32
2.27	エンドキャップ部の RPC モジュール 32
2.28	トリガーシステム

2.29	データ収集システム	34
2.30	各検出器の粒子識別を行う運動量領域	35
2.31	運動量と尤度比の関係。赤が K で青が π である。	36
3.1	$B^- \rightarrow [K^- K^+]_D K^-$ (上)、 $B^- \rightarrow [\pi^- \pi^+]_D K^-$ (下) のシグナルモンテカルロ	
	に対する M_D 、 M_{bc} 、 ΔE の分布	39
3.2	$B^- \rightarrow [K^-K^+]_D K^-$ におけるマスコンストレイントフィット、バーテックス	
	フィット後の ΔE の分布。それぞれ固定なし(左上)、D の崩壊点を固定(中	
	上)、B、Dの崩壊点を固定(右上)、Bの崩壊点を固定(左下)、Dの質量	
	を固定(中下)、B、Dの崩壊点とDの質量を固定(右下)である。	40
3.3	$B^- \rightarrow [\pi^- \pi^+]_D K^-$ におけるマスコンストレイントフィット、バーテックス	
	フィット後の ΔE の分布。それぞれ固定なし(左上)、D の崩壊点を固定(中	
	上)、B、Dの崩壊点を固定(右上)、Bの崩壊点を固定(左下)、Dの質量	
	を固定(中下)、B、D の崩壊点と D の質量を固定(右下)である。	41
3.4	シグナル(青)、コンティニュウムバックグラウンド(赤:除去前、緑:除	
	去後)のモンテカルロの ΔE 分布。 $(B^- \rightarrow [\pi^- \pi^+]_D K^-)$	41
3.5	左、中:Bイベントとコンティニュウムバックグラウンドのイベントの形状。	
	右: B イベント(青)とコンティニュウムバックグラウンド(赤)の $\cos \theta_B$	
	の分布。	42
3.6	$B^- \rightarrow [K^- K^+]_D K^-$ における KSFW と $\cos \theta_B$ の尤度比の分布	43
3.7	$B^- \to [K^- K^+]_D K^-$ 、 $B^- \to [\pi^- \pi^+]_D K^-$ における(左)KSFW と $\cos \theta_B$ を	
	合わせた尤度比 LR の分布。イベント数は1に規格化してある。(右)FoM	
	の分布。矢印に示した位置で選択を行う。	44
3.8	$B^- \to [K^-\pi^+]_D K^-$ における(左)KSFW と $\cos \theta_B$ を合わせた尤度比 LR の	
	分布。イベント数は1に規格化してある。(右)FoMの分布。矢印に示した	
	位置で選択を行う。・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
3.9	シグナル $(B^- \rightarrow [\pi^-\pi^+]_D K^-)$ とピーキングバックグラウンド $(B^- \rightarrow \pi^+)_D K^-$	
	$[K^-\pi^+]_D\pi^-) \qquad \dots \qquad $	46
3.10	$B^{-} \rightarrow [\pi^{-}\pi^{+}]_{D}K^{-} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	$[K^{-}\pi^{+}]_{D}\pi^{-}O \mathcal{V} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} I$	
	$T \mu + \gamma T \pi \mu = (\uparrow \mu) + \Lambda \pi (\uparrow \pi) = \pi^{-\pi} \pi^{-1} B K^{-2} C \Gamma K^{-2} K^{-2} C \Gamma K^{-2} K$	
	真里 $M_{K\pi}$ (L_{γ}) と ΔL (L_{γ}))の方中。 同か际云即、 かか际云夜の方中 でたて	17
9 1 1	COOO。	47
0.11	$D \rightarrow [\Lambda \Lambda]D\Lambda (\Delta) C D \rightarrow [\pi \pi]D\Lambda (\Delta) O D 小 反員重における、シグナル領域(赤) とサイドバンド領域(書)$	18
3 19	$P^{-} \rightarrow [V^{-}V^{+}]_{\circ}V^{-}$ のタサイドバンド領域に対して AF フィットでバック	40
0.12		
	は $39+13$ (中)、 1 90-1 93GeV では $60+21$ (右) である.	48
3.13	$B^- \rightarrow [\pi^- \pi^+]_{\rm D} K^-$ の各サイドバンド領域に対して ΔE フィットでバックグ	10
5.10	ラウンドを見積もった。1.80-1.83GeV ではでは 6 ± 11 (左)、1.90-1.93GeV	
	では 0 ± 13 (中)、 $1.93-1.96$ GeVでは 11 ± 9 (右) である。	49

3.14	$B^- \rightarrow [K^- K^+]_D K^-$ (右)、 $B^- \rightarrow [\pi^- \pi^+]_D K^-$ (左) の各サイドバンド領域 のフィット結果 (黒丸) から評価された、シグナル領域 (赤線) のピーキン	
	グバックグランド(赤)。	49
3 15	$B^- \rightarrow K^- K^+ K^-$, $B^- \rightarrow \pi^- \pi^+ K^-$ モンテカルロの人E分布	49
3.16	$B^- \rightarrow [K^- K^+]_{\text{D}} K^-$ のデータ(左)とモンテカルロ(右)に対するダリッ	10
0.10	ツ平面	50
317	$B^- \rightarrow [\pi^- \pi^+]_{\rm D} K^-$ のデータ(左)とモンテカルロ(右)に対するダリッツ	00
0.11	平面	50
3.18	$B^- \to [K^- \pi^+]_D \pi^-$ (左) と $B^- \to [K^- \pi^+]_D K^-$ (右) の $B\bar{B}$ バックグラウン	00
0.00	ド。右の図において、緑:プロンプト粒子がπである BBバックグラウンド、	
	灰色: プロンプト粒子が π 以外である $B\bar{B}$ バックグラウンド、 青: $B \rightarrow D\pi$	
	$e B \rightarrow DK$ と誤識別したバックグラウンド、の各成分に分けられる。	52
3.19	$B^- \rightarrow [K^- \pi^+]_D \pi^-$ に対する ΔE のフィット結果	52
3.20	$B^- \rightarrow D_1 \pi^-$ に対する ΔE のフィット結果	53
3.21	$B^- \rightarrow [K^- K^+]_D \pi^-$ に対する ΔE のフィット結果	53
3.22	$B^- \rightarrow [\pi^- \pi^+]_D \pi^-$ に対する ΔE のフィット結果	54
3.23	$B^- \rightarrow [K^-\pi^+]_D K^-$ に対する $B^- \rightarrow [K^-\pi^+]_D \pi^-$ バックグラウンドの ΔE	
	7 <i>1y</i> · · · · · · · · · · · · · · · · · · ·	56
3.24	プロンプト粒子に対する $LR(K/\pi) < 0.2, 0.4$ の要求により、 $B^- \rightarrow [K^-\pi^+]_D K^-$	
	と識別された $B^- \rightarrow [K^-\pi^+]_D \pi^- \mathcal{O} \Delta E 分布 \dots \dots \dots \dots \dots \dots \dots \dots$	56
3.25	プロンプト粒子に対する $LR(K/\pi) < 0.6, 0.8$ の要求により、 $B^- \rightarrow [K^-\pi^+]_D K^-$	
	と識別された $B^- ightarrow [K^-\pi^+]_D\pi^-$ の ΔE 分布	57
3.26	$B^- \to [K^-\pi^+]_D K^-$ のフィット結果	58
3.27	$B^- \rightarrow D_1 K^-$ のフィット結果	58
3.28	$B^- \to [K^- K^+]_D K^-$ のフィット結果	59
3.29	$B^- \to [\pi^- \pi^+]_D K^-$ のフィット結果	59
3.30	電荷で分けた $B^- \rightarrow D_1 K^-$ の ΔE の分布	61
3.31	電荷で分けた $B^- \rightarrow [K^-K^+]_D K^- \mathcal{O} \Delta E \mathcal{O} \mathcal{O} \mathcal{F} \dots \dots \dots \dots \dots \dots$	61
3.32	電荷で分けた $B^- \rightarrow [\pi^- \pi^+]_D K^-$ の ΔE の分布	61
3.33	電荷で分けた $B^- \rightarrow D_1 \pi^-$ の ΔE の分布	62
4.1	\mathcal{R}_1 (左)と \mathcal{A}_1 (右)のBaBar、Belle(前回)、CDF による結果と世界平均	64

第1章 序章

宇宙が誕生した瞬間には、物質と反物質が同量生成されたと考えられている。しかし現在 の宇宙はほとんどが物質からできており、反物質はわずかしか存在しない。標準理論は多 くの実験で検証されているが、この謎には未だ答えを与えてくれない。CP 対称性の破れ は物質と反物質の非対称性を説明し、消滅した反物質の謎を解く鍵となる。カビボ、小林、 益川によって CKM 機構 [1][2] が考案される。これは3世代クォークが存在し遷移すること によって、CP 対称性が自動的に破れるというものである。

また標準理論では、粒子の質量や混合角などの実験によって決まる定数が多い。このた め、より本質的な物理の追究を目指すのがフレーバー物理である。質量に起源を持つフレー バーの混合パラメータを精密に測る事は、CP 対称性の破れをはじめとする本質的な疑問 に答える上で重要なステップとなる。標準理論からのずれが測定されれば、標準理論を超 える物理の手がかりが得られる。この章では CP 対称性の破れのパラメータ、CP 非保存角 ϕ_3 の測定について述べる。

1.1 CKM機構

1.1.1 CKM 行列

CP 対称性の破れは、3世代のクォークの混合により自動的に導かれる。標準理論において、W ボソンを介した弱い相互作用は、以下のラグランジアンで記述される。

$$\mathcal{L}_{\rm int}(x) = -\frac{g}{\sqrt{2}} (\bar{U}_L \gamma_\mu D_L W^+_\mu + \bar{D}_L \gamma_\mu U_L W^-_\mu)$$
(1.1)

ここでgは普遍結合定数、 U_L, D_L は ρ_{1} ークフレーバーの状態であり、

$$U = \begin{pmatrix} u \\ c \\ t \end{pmatrix}, D = \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
(1.2)

である。添字 L は左巻き部分を意味する。クオークの質量の固有状態 U'_L, D'_L は、(1.2) を ユニタリ行列 S^u, S^d によって変換することにより得られる。

$$U_L = S^u U'_L \tag{1.3}$$

$$D_L = S^d D'_L \tag{1.4}$$

したがってラグランジアン(1.1)は

$$\mathcal{L}_{\rm int}(x) = -\frac{g}{\sqrt{2}} (\bar{U'}_L S^{u\dagger} \gamma_\mu S^d D'_L W^+_\mu + \bar{D'}_L S^{d\dagger} \gamma_\mu U'_L S^u W^-_\mu)$$
(1.5)

$$= (V_{CKM}\bar{U'}_{L}\gamma_{\mu}D'_{L}W^{+}_{\mu} + V^{\dagger}_{CKM}\bar{D'}_{L}\gamma_{\mu}U'_{L}W^{-}_{\mu})$$
(1.6)

とかける。ただし

$$V_{CKM} = S^{u\dagger} S^d \tag{1.7}$$

である。 V_{CKM} は CKM 行列と呼ばれ、その成分はクォーク間の遷移の結合定数に掛かる。 例えば V_{ud} は u から d へと遷移する際の結合定数である。

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
(1.8)

(1.7)と S^{u} , S^{d} のユニタリティーから V_{CKM} はユニタリ行列である。

ここでクォークが3世代であると CKM 行列に CP を破る複素位相が出現することを確認する。一般に $n \times n$ 複素行列の自由度は $2n^2$ である。まずユニタリティーを課すことにより、対角成分でn 個、その他の成分がn(n-1)の自由度を持つ事から、ユニタリ行列では n^2 の自由度がある。このうち回転変換の自由度よりn(n-1)/2のは実数空間の回転角で表す事ができて、残りが位相角となる。しかし2n 個のクォーク場は位相変換の自由度があり、全体に共通な1つの位相以外の(2n-1) 個の位相はクォーク場に吸収できる。したがってn世代の CKM 行列の位相の数は

$$n^{2} - \frac{n(n-1)}{2} - (2n-1) = \frac{(n-1)(n-2)}{2}$$
(1.9)

となる。 $n \leq 2$ の場合、CKM 行列は全て実数でかけることになる。CP を破る複素位相が現れるためには、3世代以上のクォークが必要である。

1.1.2 ユニタリティー三角形

CKM 行列はクォークの混合角 θ_{ii} と複素位相 δ によって表せる。

$$V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$
(1.10)

ここで $s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}$ である。標準模型からの要請により、 V_{CKM} はユニタリ行列である。

$$V_{CKM}^{\dagger}V_{CKM} = 1 \tag{1.11}$$

(1.11)のb列、d列を含む部分をかくと、

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 (1.12)$$

である。CKM 行列は複素成分を持つので、(1.12) は複素平面上に三角形を描く。

CP 対称性の破れが生じるためには、この三角形の面積が0 でないことが必要である。実験でよく用いられる Wolfenstein による表記 [4] を用いて CKM 行列をかくと、

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$
(1.13)

図 1.1: ユニタリティー三角形

となる。(1.10) と(1.13)の関係は

$$s_{12} \equiv \lambda, \ s_{23} \equiv A\lambda^2, \ s_{13} \equiv A\lambda^3(\rho - i\eta)$$
 (1.14)

である。ここで λ, A, ρ, η は実数、 $\lambda = \sin \theta_c \sim 0.22$ で θ_c はカビボ角である。 $|A|, |\rho|, |\eta|$ は 全て 1 程度の大きさである。さらに

$$\bar{\rho} = \rho(1 - \frac{\lambda^2}{2}) \tag{1.15}$$

$$\bar{\eta} = \eta (1 - \frac{\lambda^2}{2}) \tag{1.16}$$

とすると

$$V_{td} = A\lambda^3 (1 - \bar{\rho} - i\bar{\eta}) \tag{1.17}$$

とかけるので (1.12) は $\bar{\rho}, \bar{\eta}$ を用いて図 1.1 のようになる。 三角形の辺の長さは、

$$R_b \equiv \frac{|V_{ud}V_{ub}^*|}{|V_{cd}V_{cb}^*|} = \sqrt{\bar{\rho}^2 + \bar{\eta}^2}$$
(1.18)

$$= \frac{1 - \frac{\lambda^2}{2}}{\lambda} \frac{|V_{ub}^*|}{|V_{cb}|} \tag{1.19}$$

$$R_t \equiv \frac{|V_{td}V_{tb}^*|}{|V_{cd}V_{cb}^*|} = \sqrt{(1-\bar{\rho})^2 + \bar{\eta}^2}$$
(1.20)

$$= \frac{1}{\lambda} \frac{|V_{td}^*|}{|V_{cb}|} \tag{1.21}$$

と表され、三角形の角度は

$$\phi_1 \equiv \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \tag{1.22}$$

$$\phi_2 \equiv \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) \tag{1.23}$$

$$\phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}\right) \tag{1.24}$$

となる。本論文では ϕ_1, ϕ_2, ϕ_3 と表記するが、慣例的に $\phi_1 \in \beta, \phi_2 \in \alpha, \phi_3 \in \gamma$ と表記す る場合もある。これら $R_b, R_t, \phi_1, \phi_2, \phi_3$ は B 中間子の崩壊を用いて測定することができる。 CP の非対称性が存在するためには、三角形の面積が 0 でないことが必要である。様々な現 象からこれらの量を測定して矛盾がないことを確かめることは、標準理論の検証となる。 ϕ_1, ϕ_2, ϕ_3 の測定結果は PDG(Particle Data Group)[3] では以下のようになっている。

- $\sin 2\phi_1 = 0.681 \pm 0.025$
- $\phi_2 = 88^{+6}_{-5}$
- $\phi_3 = 77^{+30}_{-32}$

本論文と関係する ϕ_3 は、これらの角度のうちで最も測定が困難である。

1.2 CP 非対称性

1.2.1 $B^0 - \bar{B}^0$ 混合

B中間子の CP の非対称性を考えるにあたり、二つのフレーバーの固有状態 B^0 と \bar{B}^0 の 混合を考える。まず、フレーバーの固有状態の任意の線形結合を

$$a\left|B^{0}\right\rangle + b\left|\bar{B}^{0}\right\rangle \tag{1.25}$$

とかくと、この時間発展は

$$i\hbar \frac{d}{dt} \begin{pmatrix} a \\ b \end{pmatrix} = \mathcal{H} \begin{pmatrix} a \\ b \end{pmatrix} \equiv (M - i\Gamma) \begin{pmatrix} a \\ b \end{pmatrix}$$
(1.26)

とかける。ここで M, Γ は 2×2 のエルミート行列である。今、質量の固有状態 $|B_H\rangle, |B_L\rangle$ は

$$|B_H\rangle = p \left| B^0 \right\rangle + q \left| \bar{B}^0 \right\rangle \tag{1.27}$$

$$|B_L\rangle = p \left| B^0 \right\rangle - q \left| \bar{B}^0 \right\rangle \tag{1.28}$$

で与えられ、その固有値は $\lambda_{H,L}$ は

$$\lambda_H = m_H - \frac{i}{2} \gamma_H \tag{1.29}$$

$$\lambda_L = m_L - \frac{i}{2} \gamma_L \tag{1.30}$$

で与えられる。ただしp、qは複素数、 $m_{H,L}$ と $\gamma_{H,L}$ は実数である。以上より質量の固有状態の時間発展は

$$i\hbar \frac{d}{dt} |B_{H,L}(t)\rangle = \lambda_{H,L} |B_{H,L}(t)\rangle$$
(1.31)

とかけるので

$$|B_{H,L}(t)\rangle = e^{-i\lambda_{H,L}t} |B_{H,L}(0)\rangle \tag{1.32}$$

である。(1.27)~(1.32) より B⁰, <u>B</u>⁰の時間発展は

$$\left|B^{0}(t)\right\rangle = f_{+}(t)\left|B^{0}(0)\right\rangle + \frac{q}{p}f_{-}(t)\left|\bar{B}^{0}(0)\right\rangle$$
(1.33)

$$\left|\bar{B}^{0}(t)\right\rangle = f_{+}(t)\left|\bar{B}^{0}(0)\right\rangle + \frac{p}{q}f_{-}(t)\left|B^{0}(0)\right\rangle$$
(1.34)

となり、これは $B^0 - \overline{B}^0$ 混合を表している。ただし

$$f_{+}(t) \equiv \frac{1}{2} (e^{\lambda_{H}} + e^{\lambda_{L}}) = e^{-i\frac{\bar{m}}{2}t} e^{-i\frac{\gamma}{2}t} \cos\frac{\Delta m}{2} t$$
(1.35)

$$f_{-}(t) \equiv \frac{1}{2} (e^{\lambda_{H}} - e^{\lambda_{L}}) = -ie^{-i\frac{\tilde{m}}{2}t} e^{-i\frac{\gamma}{2}t} \sin\frac{\Delta m}{2} t$$
(1.36)

$$\Delta m \equiv m_H - m_L, \ \bar{m} \equiv \frac{m_H + m_L}{2} \tag{1.37}$$

$$\gamma \simeq \gamma_H \simeq \gamma_L, \ \Delta \gamma \equiv \gamma_H - \gamma_L \simeq 0$$
 (1.38)

である。

1.2.2 崩壊分岐比の導出

 B^0, \overline{B}^0 が終状態 f へ崩壊する振幅 A_f, \overline{A}_f は

$$A_f \equiv \langle f|H|B^0 \rangle \tag{1.39}$$

$$\bar{A}_f \equiv \langle f | H | \bar{B}^0 \rangle \tag{1.40}$$

とかける。時刻tで B^0 , \bar{B}^0 であった状態が微小時間の間にfへ崩壊する振幅は(1.33)、(1.34)、(1.39)、(1.40) より、

$$A_{f}(t) = \left\langle f | H | B^{0}(t) \right\rangle = A_{f}(f_{+} + \frac{q}{p}f_{-}\bar{\rho}_{f})$$
(1.41)

$$\bar{A}_{f}(t) = \left\langle f | H | \bar{B}^{0}(t) \right\rangle = A_{f}(f_{+}\bar{\rho}_{f} + \frac{p}{q}f_{-})$$
(1.42)

ただし、

$$\bar{\rho}_f \equiv \frac{\bar{A}_f}{A_f} = \frac{1}{\rho_f} \tag{1.43}$$

である。(1.41),(1.42)より時刻tでの B^0, \overline{B}^0 からfへの崩壊分岐比は

$$\Gamma(B^{0}(t) \to f) = |A_{f}|^{2} \left(|f_{+}|^{2} + \left| \frac{q}{p} \right|^{2} |\bar{\rho}_{f}|^{2} |f_{-}|^{2} + 2Re\left(\frac{q}{p} \frac{1}{\bar{\rho}_{f}} f_{+} \bar{f}_{-}\right) \right)$$
(1.44)

$$\Gamma(\bar{B}^{0}(t) \to f) = |A_{f}|^{2} \left(|\bar{\rho}_{f}|^{2} ||f_{+}|^{2} + \left| \frac{p}{q} \right|^{2} |f_{-}|^{2} + 2Re\left(\frac{p}{q}\bar{\rho}_{f}f_{+}\bar{f}_{-}\right) \right)$$
(1.45)

となる。

1.2.3 直接的な CP の破れ

今、荷電 *B* 中間子の崩壊における CP 対称性の破れを考えるため、 $B \to f \ge \overline{B} \to \overline{f}$ の 過程を考える。これらの過程の振幅、 $A_f \ge \overline{A_f}$ は、一般に崩壊により生じる強い相互作用 の位相 δ と、CKM 行列の複素成分から生じる弱い相互作用の位相 ϕ を用いて

$$A_f = \sum_i A_i e^{i(\delta_i + \phi_i)} \tag{1.46}$$

$$\bar{A}_{\bar{f}} = \sum_{i} \bar{A}_{i} e^{i(\delta_{i} - \phi_{i})} \tag{1.47}$$

とかける。 δ は CP 変換で符号が不変だが、 ϕ は CP 変換で符号が逆になる。 CP 非対称性度は

$$\mathcal{A}_{f} = \frac{\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f})}{\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f})}$$
(1.48)

$$= \frac{1 - |\bar{A}_{\bar{f}}/A_f|^2}{1 + |\bar{A}_{\bar{f}}/A_f|^2} \tag{1.49}$$

である。したがって

$$\left|\frac{A_{\bar{f}}}{A_f}\right| \neq 1 \tag{1.50}$$

つまり

$$|A_f|^2 - |\bar{A}_{\bar{f}}|^2 = -2\sum_{i,j} A_i A_j \sin(\phi_i - \phi_j) \sin(\delta_i - \delta_j)$$
(1.51)

が0でない場合 CP 対称性の破れが生じる。これは直接的な CP の破れと呼ばれる。CP 対称性が破れるためには、同じ終状態へ二つ以上の崩壊過程があり、大きさが違いすぎない振幅、0 でない強い相互作用の位相差、そして0 でない弱い相互作用の位相差が必要である。

1.3 ϕ_3 の測定

(1.24) のうち複素成分は Vub だけであるので

$$\phi_3 \sim \arg(V_{ub}^*) \tag{1.52}$$

となる。すなわち ϕ_3 の測定は V_{ub} の位相の測定であるといえ、 $b \to u$ の遷移を含む崩壊を 用いて行われる。代表的なものは $B \to DK$ であり、この崩壊はループの影響が小さく、ツ リーレベルで扱える。この論文では $B^- \to D^0 K^-$ と $B^- \to \overline{D}^0 K^-$ を用いる。

1.3.1 GLW法

GLW(Gronau - London - Wyler)法 [5]、[6] は $B \rightarrow D_{1,2}K$ 過程を用いる。 D_1, D_2 はそれ ぞれ CP-even、CP-odd の固有状態

$$D_{1,2} = \frac{1}{\sqrt{2}} (D^0 \pm \bar{D}^0) \tag{1.53}$$

である。 D_1 としては D^0 が $K^+K^-, \pi^+\pi^-$ へ、 D_2 としては D^0 が $K_s^0\pi^0, K_s^0\omega, K_s^0\phi$ へ崩壊 する過程などがある。図 1.2、図 1.3 に $B^- \to D^0K^-, \overline{D}^0 \to K^+K^-$ と $B^- \to \overline{D}^0K^-, D^0 \to K^+K^-$ のダイアグラムを示す。

 $B \rightarrow D_{1,2}K$ の振幅は (1.46)、 (1.53) より

$$A(B^+ \to D_1 K^+) = \frac{1}{\sqrt{2}} \left(A(B^+ \to D^0 K^+) e^{i(\phi_3 + \delta_1)} + A(B^+ \to \bar{D}^0 K^+) \right)$$
(1.54)

$$A(B^{-} \to D_{1}K^{-}) = \frac{1}{\sqrt{2}} \left(A(B^{-} \to \bar{D}^{0}K^{-})e^{i(-\phi_{3}+\delta_{1})} + A(B^{-} \to D^{0}K^{-}) \right) \quad (1.55)$$

$$A(B^+ \to D_2 K^+) = \frac{1}{\sqrt{2}} \left(A(B^+ \to D^0 K^+) e^{i(\phi_3 + \delta_2)} - A(B^+ \to \bar{D}^0 K^+) \right)$$
(1.56)

$$A(B^{-} \to D_{2}K^{-}) = \frac{1}{\sqrt{2}} \left(-A(B^{-} \to \bar{D}^{0}K^{-})e^{i(-\phi_{1}+\delta_{2})} + A(B^{-} \to D^{0}K^{-}) \right)$$
(1.57)

となる。 ϕ_3 が CP 変換で位相が反転していることが CP 対称性の破れを引き起こす。 $\delta_{1,2}$ は $B^- \rightarrow \overline{D}^0 K^-$ と $B^- \rightarrow D^0 K^-$ の強い相互作用起因の位相の差であり、以下の関係がある。

$$\delta_2 = \delta_1 + \pi \tag{1.58}$$

(1.54)、(1.55)の関係を複素平面上に図 1.4のように描くことができ、 ϕ_3 が振幅の間の角 として出現する事が分かる。

(1.54)~(1.57)より CP 非対称度 $\mathcal{A}_{1,2}$ 、 $B \to D_{1,2}K$ と $B \to D^0 K$ の崩壊分岐比の比 $\mathcal{R}_{1,2}^{DK}$ は

$$\mathcal{A}_{1,2} \equiv \frac{\Gamma(B^- \to D_{1,2}K^-) - \Gamma(B^+ \to D_{1,2}K^+)}{\Gamma(B^- \to D_{1,2}K^-) + \Gamma(B^+ \to D_{1,2}K^+)}$$
(1.59)

$$= \frac{2r_B \sin \phi_3 \sin \delta_{1,2}}{1 + r_B^2 + 2r_B \cos \phi_3 \cos \delta_{1,2}}$$
(1.60)

$$\mathcal{R}_{1,2}^{DK} \equiv \frac{\Gamma(B^- \to D_1 K^-) + \Gamma(B^+ \to D_1 K^+)}{\Gamma(B^- \to D^0 K^-) + \Gamma(B^+ \to D^0 K^+)}$$
(1.61)

$$= 1 + r_B^2 + 2r_B \cos \phi_3 \cos \delta_{1,2} \tag{1.62}$$

となる。ただし

$$r_B \equiv \frac{|A(B^- \to \bar{D}^0 K^-))|}{|A(B^- \to D^0 K^-))|}$$
(1.63)

である。

(1.54) から (1.57) に現れる全ての崩壊の崩壊分岐比が測定できた場合、 r_B , $A_{1,2}$, $\mathcal{R}_{1,2}^{DK}$ は全て求めることができる。したがって二つの未知変数 ϕ_3 , $\delta_{1,2}$ に対して、二つの方程式 $A_{1,2}$, $\mathcal{R}_{1,2}^{DK}$ が得られるので、 ϕ_3 をもとめることができる。

しかしこの方法には欠点がある。(1.63)よりカラー因子を acol として

$$r_B = \frac{|B^- \to \bar{D}^0 K^-)|}{|B^- \to D^0 K^-)|} \approx \frac{|V_{ub}^* V_{cs}|}{|V_{cb}^* V_{us}|} a_{col} \approx |R_b| a_{col} \sim 0.1$$
(1.64)

図 1.2: $B^- \to D^0 K^-$ 、 $D^0 \to K^- K^+$ のダイアグラム

図 1.3: $B^- \to \bar{D}^0 K^-$ 、 $\bar{D}^0 \to K^- K^+ \mathcal{O}$ ダイアグラム

図 1.4: (1.54)、(1.55)の振幅の関係

であるので、崩壊分岐比にして100倍異なるものを精密に測定しなければならない。図 (1.4)の三角形は、実際にはもっと潰れた形となる。

さらにこの方法にはもうひとつ大きな問題がある。 $\Gamma(B^- \to D^0 K^-)$ の測定に $D^0 \to K^+\pi^-$ の崩壊を使うとする。この場合測定する崩壊課程と始状態、終状態が同じである $B^- \to \overline{D}^0 K^-, \overline{D}^0 \to K^+\pi^-$ が影響してくる。この二つの過程の崩壊分岐比の比率は

$$\frac{\Gamma(B^- \to \bar{D}^0 K^-) \times \Gamma(\bar{D}^0 \to K^+ \pi^-)}{\Gamma(B^- \to \bar{D}^0 K^-) \times \Gamma(\bar{D}^0 \to K^+ \pi^-)} \sim \frac{10^{-4} \times 10^{-2}}{10^{-2} \times 10^{-4}} \sim O(1)$$
(1.65)

と同程度であり、干渉を起こす。したがって $\Gamma(B^- \to D^0 K^-)$ と $\Gamma(B^- \to \overline{D}^0 K^-)$ を別々に 測定する事は困難である。

 $D^0 \ge \overline{D}^0 \ge \overline{D}$ ② ② ② ② ② ② ② ② ③ ② ③ ③ $D^0 \ge \overline{D}^0 = \overline{D}^0 \ge \overline{D}^0 = \overline{D}^0 = \overline{D}^0 = \overline{D}^0 = \overline{D}^0 = \overline{D}^0 = \overline$

1.3.2 ADS法

ADS(Atwood-Dunietz-Soni) 法 [7] では、GLW 法の欠点の原因でもある、B が同じ終状 態へ崩壊した場合に起こる干渉を利用して ϕ_3 を求める。D の崩壊過程としては $D^0 \rightarrow K^-\pi^+, \bar{D}^0 \rightarrow K^-\pi^+$ などを用いる。

終状態をfとし、BとDの崩壊の振幅を

$$A_B = A(B^- \to D^0 K^-) = A(B^+ \to \bar{D}^0 K^+)$$
(1.66)

$$\bar{A}_B = A(B^- \to \bar{D}^0 K^-) = A(B^+ \to D^0 K^+)$$
 (1.67)

$$A_D = A(\bar{D}^0 \to f) \tag{1.68}$$

$$\bar{A}_D = A(D^0 \to f) \tag{1.69}$$

とすると、 B^- が DK^- を介して fK^- へと崩壊する崩壊分岐比は

$$\Gamma(B^- \to [f]_D K^-) = |A(B^- \to [f]_{D^0} K^-) + A(B^- \to [f]_{\bar{D}^0} K^-)|^2$$
(1.70)

$$= |A_B|^2 |A_D|^2 \left(r_B^2 + r_D^2 + 2r_B r_D \cos(-\phi_3 + \delta_B + \delta_{D_f}) \right) \quad (1.71)$$

とかけ、 B^+ が DK^+ を介して $\bar{f}K^+$ へと崩壊する崩壊分岐比は

$$\Gamma(B^+ \to [\bar{f}]_D K^+) = |A(B^+ \to [\bar{f}]_{D^0} K^+) + A(B^+ \to [\bar{f}]_{\bar{D}^0} K^+)|^2$$
(1.72)

$$= |A_B|^2 |A_D|^2 \left(r_B^2 + r_D^2 + 2r_B r_D \cos(\phi_3 + \delta_B + \delta_{D_f}) \right) \quad (1.73)$$

と書ける。ただし

$$r_B = \frac{|\bar{A}_B|}{|A_B|}, \ r_D = \frac{|\bar{A}_D|}{|A_D|}$$
 (1.74)

で δ_B, δ_{D_f} はB、Dの崩壊における強い相互作用起因の位相の差である。 r_D はCLEOなどで測定されている。 δ_{D_f} は終状態fに依存する。以上よりCP非対称度 A_f と崩壊分岐比の

比 \mathcal{R}_f は

$$\mathcal{A}_{f} \equiv \frac{\Gamma(B^{-} \to [f]_{D}K^{-}) - \Gamma(B^{+} \to [\bar{f}]_{D}K^{+})}{\Gamma(B^{-} \to [f]_{D}K^{-}) + \Gamma(B^{+} \to [\bar{f}]_{D}K^{+})}$$
(1.75)

$$= \frac{2r_B r_D \sin \phi_3 \sin \delta_1}{r_B^2 + r_D^2 + 2r_B r_D \cos \phi_3 \cos(\delta_B + \delta_{D_f})}$$
(1.76)

$$\mathcal{R}_f \equiv \frac{\Gamma(B^- \to [f]_D K^-) + \Gamma(B^+ \to [\bar{f}]_D K^+)}{\Gamma(B^- \to [\bar{f}]_D K^-) + \Gamma(B^+ \to [f]_D K^+)}$$
(1.77)

$$= r_B^2 + r_D^2 + 2r_B r_D \cos \phi_3 \cos(\delta_B + \delta_{D_f})$$
(1.78)

とかける。今 r_D が分かっているi個の終状態 f_i があるとする。 $\delta_{f_i} \equiv \delta_B + \delta_{D_{f_i}}$ として A_{f_i} 、 \mathcal{R}_{f_i} の式の未知変数 $r_B, \phi_3, \delta_{f_i}$ をかくと、 r_B と ϕ_3 はどの終状態についても共通なので、

$$\mathcal{A}_{f_1} = \mathcal{A}_{f_1}(r_B, \phi_3, \delta_{f_1}) \tag{1.79}$$

$$\mathcal{R}_{f_1} = \mathcal{R}_{f_1}(r_B, -\phi_3, \delta_{f_1}) \tag{1.80}$$

$$\mathcal{A}_{f_2} = \mathcal{A}_{f_2}(r_B, \phi_3, \delta_{f_2}) \tag{1.81}$$

$$\mathcal{R}_{f_2} = \mathcal{A}_{f_2}(r_B, -\phi_3, \delta_{f_2}) \tag{1.82}$$

となり、n 個の終状態では2nの方程式とn+2の未知変数があることになる。したがって 2つの終状態があれば原理的には ϕ_3 を測定することができる。また、多くの終状態fを用 いればより強い制限をかけることができる。

fとして $D^0 \to K^+\pi^-$ を用いた場合、(1.65)より崩壊分岐比は小さいが、干渉効果は大きい。したがって測定は困難であるが ϕ_3 に対する感度はよい。 $D^0 \to K^+\pi^-$ を終状態として用いた場合、振幅の関係は図 1.5 となる。

一方 f として GLW 法で用いた D_1 を用いることもできる。この場合 (1.64)、 D^0 , \bar{D}^0 の 崩壊分岐比が同程度であることから $|r_B||r_D|$ は小さく、干渉効果は小さい。したがって ϕ_3 に対する感度は悪くなるが、崩壊分岐比は大きいので $D^0 \to K^-\pi^+$ に比べ精密に測定を行 え、 ϕ_3 の情報を得るのに非常に有効だと考えられる。ADS 法に D_1 や D_2 といった GLW 解 析の崩壊過程も含め、ADS+GLW 法と呼ぶことがある。崩壊分岐比と ϕ_3 に対する感度が 異なる崩壊を組み合わせるこの方法は、今後の ϕ_3 測定の有望な方法の一つとして考えられ ている。

この論文の解析では $B^{\pm} \rightarrow D_1 K^{\pm}$ を解析し、以下に定義する CP 非対称度 A_1 と崩壊分 岐比の比 \mathcal{R}_1 を求める。

$$\mathcal{A}_1 \equiv \frac{\Gamma(B^- \to D_1 K^-) - \Gamma(B^+ \to D_1 K^+)}{\Gamma(B^- \to D_1 K^-) + \Gamma(B^+ \to D_1 K^+)}$$
(1.83)

$$= \frac{2r_B \sin \phi_3 \sin \delta_1}{1 + r_B^2 + 2r_B \cos \phi_3 \cos \delta_1}$$
(1.84)

$$\mathcal{R}_{1} \equiv \frac{R^{D_{1}}}{R^{D_{0}}} = 1 + r_{B}^{2} + 2r_{B}\cos\phi_{3}\cos\delta_{1}$$
(1.85)

図 1.5: (1.54)、(1.55)の振幅の関係

$$R^{D_1} = \frac{\Gamma(B^+ \to D_1 K^+) + \Gamma(B^- \to D_1 K^-)}{\Gamma(B^+ \to D_1 \pi^+) + \Gamma(B^- \to D_1 \pi^-)}$$
(1.86)

$$R^{D_0} = \frac{\Gamma(B^+ \to \bar{D}^0 K^+) + \Gamma(B^- \to D^0 K^-)}{\Gamma(B^+ \to \bar{D}^0 \pi^+) + \Gamma(B^- \to D^0 \pi^-)}$$
(1.87)

後述するが、 \mathcal{R}_1 の計算に $B \rightarrow D_1 \pi$ と比をとって規格化するのは、系統誤差を減らすためである。

第2章 Belle実験

B 中間子系での CP 対称性の破れを測定するには、大量の B 中間子を生成し、崩壊現象を 精密に測定しなければならない。この目的のために行われているのが Belle 実験である。実 験は茨城県つくば市の高エネルギー研究機構(KEK)で行われている。Belle 実験は世界 最高のルミノシティを誇る KEKB 加速器と、B 中間子の CP 対称性の破れを測定するため に最適化された、Belle 検出器によって行われている。この章では KEKB 加速器と、Belle 検出器についてのべる。

2.1 KEKB 加速器

KEKB 加速器 [8] は円周 3km のリングと線形加速器からなる、電子陽電子非対称衝突型 加速器である。加速器の全体像を図 2.1 に、主なパラメータを表 2.1 に示す。線形加速器 で電子 8.0GeV、陽電子 3.5GeV に加速された後、リングに入射した電子と陽電子はそれぞ れ電子リング (High Energy Ring : HER) と陽電子リング (Low Energy Ring : LER)を 経て、Belle 検出器のある衝突領域 (IR) で衝突する。重心エネルギー 10.58GeV であり、こ れは $b\bar{b}$ からなる粒子 $\Upsilon(4S)$ ができる閾値である。衝突した電子と陽電子は $\Upsilon(4S)$ を経て、 $B^0\bar{B}^0$ に約 50%, B^+B^- に約 50%, とほぼ 100% $B\bar{B}$ ペアに崩壊する。

KEKB 加速器の特徴としては

- 世界最高のルミノシティ
- 非対称エネルギー
- 有限交差角

があげられる。以下これら三つについて簡単に説明する。

2.1.1 世界最高のルミノシティ

ルミノシティは(相互作用/単位反応断面積)であり、加速器の性能を表す。KEKB は 2006 年にピークルミノシティ1.7118 × 10^{34} cm⁻²s⁻¹ を達成した。また 2008 年までの積分ル ミノシティは 894.816 fb⁻¹ である。これらはともに世界最高である。ピークルミノシティと 積分ルミノシティの年ごとの変化を図 2.2、図 2.3 に示す。なお図 2.2 には比較のため PEPII の値を示した。PEPII はアメリカ、スタンフォードで行われている BaBar 実験の加速器で あり、KEKB と同様に大量の *B* 中間子を生成している。

図 2.1: KEKB 加速器の全体像

パラメータ	陽電子リング	電子リング	単位
円周	301	6	m
RF 周波数	508.	88	MHz
ビーム電流	1605	934	mA
バンチ数	1585		
バンチ電流	1.01	0.590	mA
バンチ間隔	2.1		m
バンチトレイン数	1		
全RF電圧	8.0	13.0	MV
ビームの寿命	94(1605)	158(934)	$\min(mA)$
ルミノシティ	16.10		$10^{33}/{\rm cm}^2/{\rm sec}$
ルミノシティ記録 日/7日/30日	1.232/7.809/30.21		fb^{-1}

表 2.1: KEKB マシンパラメータ

ルミノシティLum は

$$Lum \propto \frac{I_+ I_-}{\beta_{u^* +} \beta_{u^* -}} \tag{2.1}$$

との関係がある。ただし I_{\pm} は電子、陽電子のビーム電流、 $\beta_{y*\pm}$ は衝突点でのベータ関数 であり、垂直方向にどれだけビームを絞るかを表すパラメータである。ルミノシティ増加 のためには、(1) ビーム電流 I_{\pm} を大くし、(2) $\beta_{y*\pm}$ を小さくしてビームサイズを絞る必要が ある。

(1) はビームにパワーを供給する RF の増強によって達成される。しかしビーム電流の 増加によって、真空機器などの装置が破壊やビーム自身の電場による不安定性の増加が生 じる。これらの問題は装置の保護や、ビームのフィードバックシステムにより対処されて いる。

(2) については四重極磁石を組み合わせることにより、ビームを小さく絞っている。絞り 込んだビームを広げてしまう要因としては電子雲現象などがある。電子雲とは陽電子ビー ムからでた放射光が装置と反応して光電子をつくり、この電子が陽電子ビームに引かれて 雲のようになる現象である。電子雲はリングにソレノイドをまいて磁場をつくり、ビーム に集まらないようにすることで対処されている。

2.1.2 エネルギーの非対称性

電子と陽電子のエネルギーが非対称であるのは、B中間子の崩壊時間を測定するためで ある。時間に依存した CP の破れを測定するためには、B中間子の崩壊時間を精密に測定 する事が必要である。B中間子の崩壊時間は飛距離から求める事ができる。もし、電子と 陽電子のエネルギーを対称にして衝突させた場合、 $\Upsilon(4S)$ は静止してつくられる。この場 合、実験室系でのBの飛距離は 30μ m 程度である。これを測定することは実験的に困難で ある。一方、電子 8.0GeV、陽電子 3.5GeV の非対称エネルギーで衝突させた場合、 $\Upsilon(4S)$ はブーストされた状態でつくられる。実験室系でのBの飛距離は 200μ m 程度となり、こ

図 2.2: KEKB、PEPIIのピークルミノシティ

図 2.3: KEKB の積分ルミノシティ

れは測定可能である。

エネルギーの非対称度を大きくすれば、B中間子の飛距離は大きくなり時間分解能もよくなる。しかし崩壊現象がブーストされると、検出器の有効領域が小さくなる。また電子リングではイオントラッピングといって、イオン化した真空容器内の残留ガスが電子軌道周辺に補足され、ビームを撹乱する現象がある。ビームが低エネルギーであるほどこの現象の影響は大きい。これらの観点などからエネルギーは電子 8.0GeV、陽電子 3.5GeV となっている。 $B\bar{B}$ ペアのローレンツブースト因子は $\beta\gamma = 0.43$ である。

2.1.3 有限交差角

ビームの交差角は22mradである。この理由は衝突点付近の設計が簡単になるためであ る。電子と陽電子は別のリングを走るので、衝突後に二つのビームを分ける必要がある。 正面衝突の場合、磁石を設置して衝突後のビームを分離する必要があるが、有限交差角の 場合はそれが必要なく設計をシンプルにできる。また磁石が少ない分、ビームサイズの増 大も起こりにくい。

2.2 Belle 検出器

Belle 検出器 [9] はビームの衝突点に設置され、B 中間子の崩壊現象を測定する。Belle 検 出器の概観を図 2.4 に、イベントが測定される様子を図 2.5 に示す。また各検出器の主な役 割を表 2.2 に示す。以下図 2.4 で示すように、ビーム軸を z 軸、 z 軸からの角度を θ と定義 する。検出器のカバーする領域は、17° < θ < 150° である。領域が非対称なのは、電子と 陽電子のエネルギーが非対称だからである。以下の節では各検出器の概要を述べる。

2.2.1 シリコン衝突点検出器:SVD

シリコン衝突点検出器 (Silicon Vertex Detector:SVD) は衝突点の検出、および後述する 中央ドリフトチェンバの情報と合わせて荷電粒子の飛跡の検出を行う。時間に依存した CP 非保存の研究には、B 中間子の崩壊時間を測定するために、z 方向の分解能が高いことが

図 2.4: Belle 検出器の全体像

検出器	役割
崩壞点検出器(SVD)	崩壞点検出
中央ドリフトチェンバ (CDC)	運動量測定、粒子識別
エアロジェルチェレンコフカウンター(ACC)	粒子識別 (1.2 < p < 3.5[GeV])
飛行時間カウンター(TOF)	粒子識別 (p < 1.2[GeV])
電磁カロリメータ (ECL)	電子、光子のエネルギー測定
超伝導ソレノイド	1.5T 磁場の発生
$K^0_L\mu$ 粒子検出器 (KLM)	K_L^0 と μ 粒子の検出
超前方カロリメータ (EFC)	ルミノシティ測定

表 2.2: 各検出器の役割

図 2.5: Belle 検出器でイベントが測定される様子

要求される。また衝突点に最も近いため、放射線耐性が高く作られている。

荷電粒子の通過により電離がおきると、シリコンに自由電子とホールが生じる。電磁場 内をドリフトしたこれらの自由電子とホールを読み出すことで、粒子の通過位置を測定す ることができる。各層での粒子の通過位置をつなぎ合わせることで崩壊点を測定すること ができる。位置分解能をあげるために SVD はできるだけ衝突点近くに設置されている。

SVD は 2002 年までは SVD1 を使っていたが、2003 年以降は SVD2 にアップグレードさ れた [10][11]。SVD1 の概観を図 2.6 に示す。SVD1 は 3 層構造をもち、各層の半径は 30、 45.5、60.5mm である。それぞれの層は 8、10、14 個の独立したラダーからなる。各ラダー には両面シリコンストリップ検出器 (DSSD : Double-sided Silicon Strip Detector) が取り 付けられている。SVD1 は合計で 102 の DSSD を使用している。DSSD とは厚さ 300 μ m の シリコン板に 57.5×33.5mm のチップを貼付けたものである。位置分解能は $\sigma_{\Delta Z} \sim 80\mu$ m 程度である。 検出器の有効角度は 23° < θ < 139° であり、全立体角の 86% にあたる。

SVD2の概観を図 2.7、図 2.8 に示す。SVD2 は放射線耐性が強化されたほか、いくつかのアップグレードがなされた。大きな変化としては 4 層構造となったことである。各層で 6,12,18,18 個のラダーを使っている。ビームパイプを細くできた事で一番内側の層は半径 20mm となり、より衝突点に近くなった。使用している DSSD は 246 個になる。有効な角 度領域は 17° < θ < 150° と改善された。

2.2.2 中央ドリフトチェンバ:CDC

中央ドリフトチェンバ (Central Drift Chamber)[12] は荷電粒子の飛跡の検出を行う。飛跡の曲率から運動量の測定、電離損失 (dE/dx) から粒子の同定を行う。運動量の測定は運動量 p、磁場 B、軌道の半径 ρ の関係 : p[GeV/c]=0.3B[T] ρ [m] から求まる。ガスを敷き詰めた中を荷電粒子が通り、電離したガスから生じた電子がドリフトする時間から、粒子の

図 2.6: SVD1 の全体像

図 2.7: SVD2の断 面図

図 2.8: SVD2の側面図

位置を知る事ができる。

dE/dx lt

$$\frac{dE}{dx} = \left(\frac{e^2}{4\pi\epsilon^0}\right)^2 \frac{4\pi N_A}{m_e c^2} \frac{\rho Z}{A} \frac{1}{\beta^2} \left(\ln\left(\frac{2m_e c^2 \gamma^2 \beta^2}{I}\right) - \beta^2 - \frac{\delta}{2}\right)$$
(2.2)

として近似される。ただし通過する物質の密度、原子量、原子番号を ρ , A, Z、アボガドロ 数を N_A 、Iはイオン化ポテンシャル、 β , γ は粒子のブーストパラメータである。dE/dxは β に依存するので、同じ運動量であっても粒子の質量によって β が変わる事から、dE/dxと運動量の測定することにより粒子の識別が可能となる。粒子の種類とdE/dxの関係を図 2.9 に示す。運動量が低い領域での粒子によるdE/dxの分布の差が見られる。

図 2.10 に CDC の構造を示す。CDC は 32 層のビーム軸方向のワイヤーレイヤー、18 層 のステレオワイヤーレイヤーからなる 50 層のアノードワイヤーレイヤーと、3 層のカソー ドレイヤーからなる。アノードワイヤーは直径 30µm の金メッキのタングステン製、フィー ルドワイヤーは直径 126µm のアルミニウム製である。図 2.11 のように一つのドリフトセ ルは、一本のアノードワイヤーを8本のフィールワイヤーが囲むことによって形成されて いる。全ワイヤーの数は3 万以上になる。ガスには He 50%C₂H₆ 50%の混合気体を用いる。 多重クーロン散乱を防ぐために原子番号が小さい気体が選ばれた。

CDC は 17° < θ < 150°の領域をカバーする。位置分解能は 130 μ m、垂直方向運動量 p_t の分解能は $\sigma_{p_t}/p_t = 0.3\%\sqrt{p_t^2 + 1}$ 、dE/dxの分解能は $\sigma_{dE/dx} = 6\%$ である。垂直方向の運動量と運動量分解能の関係を図 2.12 に、電離損失の分解能を図 2.13 に示す。

図 2.9: dE/dx と運動量の関係

図 2.10: CDC の全体像

	0	0	0	0	0	0	0	
	٥		0		0		ο	
0	0	0	0	0	0	0	0	0
0		0	a	0		0		0
Q	Ŷ	0	0	0	D	¢	0	0
	emm		0		0	•	0	
		17mr	•• ● 0 n	0	0	٥	D	
				⊖ Fle ₀ Ser	ld Wire nse Wir	Al 126µ e Au pla	umø ated W :	30 µm ϕ

BELLE Central Drift Chamber

図 2.11: ドリフトセル

図 2.12: 垂直方向運動量 pt の分解能

図 2.13: πに対する *dE/dx*

2.2.3 エアロジェルチェレンコフカウンター:ACC

エアロジェルチェレンコフカウンター(ACC: Aerogel Cherenkov Counter)[13] はチェ レンコフ光を利用して K^{\pm} 中間子と π^{\pm} 中間子の区別を行う。 K^{\pm} 中間子と π^{\pm} 中間子は B 中 間子の崩壊で非常に多く作られるので、これらを区別する事は解析に重要な役割を果たす。

チェレンコフ光は、屈折率nの物質中を質量m、運動量p、速度 β の荷電粒子が通過する際、

$$n \ge \frac{1}{\beta} = \sqrt{1 + \left(\frac{m}{p}\right)^2} \tag{2.3}$$

の条件をみたすと放射される。同じ運動量でも $K \ge \pi$ では質量が異なるので、 π のみチェレンコフ光が放射されるような屈折率の物質を選べば、 $K \ge \pi$ が区別できる。

図 2.14 に ACC の概観を示す。ACC は CDC の外側に設置されており、バレル部 960 個、 エンドキャップ部 228 個の ACC モジュールからなる。モジュールはチェレンコフ光をと らえるため、衝突点の方向を向くように設置されている。バレル部とエンドキャップ部の ACC モジュールを図 2.15, 図 2.16 に示す。ACC モジュールは、5 枚のエアロジェルのタ イルをつめた 12 × 12 × 12cm² 程のアルミニウムの箱に、ファインメッシュタイプの PMT (FM-PMT)を取り付けたものである。シリカエアロジェルの屈折率は 1.010~1.030 であ り、ほとんど 1 に近い値である。非対称エネルギー衝突により、角度によって区別したい 運動量が異なるため、角度領域ごとに粒子の識別に最適な屈折率のエアロジェルを使用し ている。また、一般に PMT は磁場中でゲインが落ちるため使えないが、この FM-PMT は 1.5T の磁場中でも 10⁵ ~ 10⁶ 程度ゲインを保持するので使用が可能である。FM-PMT の概 観、磁場中でのゲインの変化をそれぞれ図 2.17、2.18 に示す。

ACC は運動量 p が $1.2 GeV、角度 <math>17^{\circ} < \theta < 127^{\circ}$ の領域において粒子識別を行う。後述するが粒子の識別は CDC、ACC、TOF の情報を組み合わせて行われる。

2.2.4 飛行時間カウンター: TOF

飛行時間カウンター(Time Of Flight:TOF)[14] は粒子の飛行時間を測定して、粒子の 識別を行うプラスチックシンチレーションカウンターである。質量 m、運動量 p、速度 β

図 2.14: ACC、TOF の全体像

図 2.15: バレル部の ACC モジュール

図 2.17: ファインメッシュPMT

b) Endcap ACC Module

図 2.16: エンドキャップ部の ACC モジュール

図 2.18: 磁場中におけるファインメッシュ PMTのゲインの変化

図 2.19: TOF の全体像

の粒子の飛行距離Lと飛行時間Tの関係は

$$T = \frac{L}{c\beta} = \frac{L}{c}\sqrt{1 + \left(\frac{m}{p}\right)^2}$$
(2.4)

である。CDC からの情報である運動量pと、TOF で測定された飛行時間Tを合わせて粒子の質量を求め、荷電粒子の識別を行うことができる。

図 2.14 および図 2.19 に TOF の概観を示す。TOF は電磁カロリメータの内壁、衝突点から 1.2m の場所に設置され、128 個の TOF カウンターと 64 個の TSC (Trigger Scintillation Counter)という、二つのカウンターから構成される。TOF カウンターは長さ 255cm の BC408 プラスチックシンチレータの両端に FM-PMT が取り付けられている。シンチレータの光減衰長は約 3.9m である。ライトガイドを使用せずに FM-PMT を直接取り付けることにより、ライトガイド中での光の余分な分散、損失をなくすことができる。

TOF は運動量が 1.2GeV 以下の粒子の識別を行い、時間分解能は 100ps である。この運 動量は $\Upsilon(4S)$ の崩壊では 90% を占める。有効な角度領域は 34° < θ < 120° である。図 2.20 に TOF の時間分解能、図 2.21 に粒子識別性能を示す。1.2GeV 以下の π 、K、p の識別がで きている。

2.2.5 電磁カロリメータ:ECL

電磁カロリメータ(Electromagnetic CaLorimeter : ECL) [15] は光子や電子のエネル ギーと入射位置を測定する。電子や光子が物質中へと入射すると、電磁シャワーが発生す る。電子や光子のエネルギーが物質中で全て失われるようにすれば、電磁シャワーを読み 出す事により、入射した電子や光子のエネルギーを測定できる。

図 2.22 に ECL の概観を示す。ECL は超伝導ソレノイドの内側に設置され、外径 3.0m、内径 1.25m のバレル部と、衝突点から前方に 2.0m、後方に 1.0m に設置されたエンドキャップ 部から成る。バレル部とエンドキャップ部を合わせて 17° < θ < 150° の領域を覆う。ECL は 8736 個の CsI(Tl) 結晶カウンターを用いている。カウンターの概観を図 2.23 に示す。CsI(Tl)

図 2.20: TOF の時間分解能

図 2.21: 運動量 1.2GeV 以下での TOF による 粒子の識別

結晶カウンターはタワーのような形をしており、長さ 30cm、衝突点側は約 5.5×5.5cm、読 み出し側は 6.5 × 6.5cm である。読み出しはフォトダイオードで行う。

ECL のエネルギー分解能は $1.3\%/\sqrt{E(\text{GeV})}$ 、位置分解能は $0.5 \text{cm}/\sqrt{E \text{GeV}}$ である。

2.2.6 超伝導ソレノイド

超伝導ソレノイドは、ECL と KLM の間に設置され、1.5T の強磁場を測定器中心付近の 直径 3.4m、長さ 4m の領域につくる。コイルは NbTi/Cu 合金の超伝導素材で、液体ヘリ ウム冷凍機により –268°C に冷却されて超伝導状態となっている。コイルには 4160A の大 電流が流れている。

2.2.7 K_T^0 中間子 μ 粒子検出器:KLM

 K_L^0 中間子 μ 粒子検出器 ($K_L^0\mu$ detector : KLM)[16] は電気的に中性な K_L^0 中間子の検出 と、透過力の強い μ 粒子の同定を行う。 μ 粒子 (質量 105MeV) は π 中間子 (質量 140MeV) と質量が近いので、CDC、ACC、TOF での情報から識別するのは困難だからである。

図 2.24 に KLM の全体像を示す。KLM は超伝導ソレノイドの外側に設置され、図 2.25 の ように交互に並べた高抵抗電極カウンター(RPC)と厚さ 4cm の鉄板からなる。バレル部 では 15 層、エンドキャップ部では 14 層で構成される。図 2.26 にバレル部、図 2.27 にエン ドキャップ部のモジュールを示す。 K_L^0 中間子は、ECL や KLM で物質と強い相互作用をし て発生するハドロンシャワーから検出できる。 μ 粒子は強い相互作用をしないため、KLM を貫く枚数はハドロンより多くなる。このことから μ 粒子と π 中間子を識別できる。

KLM は運動量が 600MeV 以上の K_L^0 中間子 μ 粒子を検出する。有効な角度領域は図 2.24 で示すように 20° < θ < 150° である。

BELLE CSI ELECTROMAGNETIC CALORIMETER

図 2.23: ECL カウンター

51° ~ 117° Barrel region

37° ~ 51°, 117° ~ 130° Очегlap region

25° ~ 37°, 130° ~ 145° Endcap region

図 2.26: バレル部の RPC モジュール

図 2.27: エンドキャップ部の RPC モジュール

物理過程	反応断面積 (nb)	トリガーレート (Hz)
$\Upsilon(4S) \to B\bar{B}$	1.2	12
qq̄ によるハドロン生成	2.8	28
$\mu^+\mu + \tau^+\tau^-$	1.6	16
バーバー散乱	44	4.4
光子対生成	2.4	0.24
2光子過程	~15	~ 35
計	~ 67	~ 96

表 2.3: ルミノシティ10³⁴ cm⁻² s⁻¹ における各物理過程の反応断面積とトリガーレート。バー バー散乱と光子対生成は反応断面積が大きいので、トリガーレートを 1/100 にしている。

2.2.8 超前方カロリメータ:EFC

超前方カロリメータ(Extreme Forward Calorimeter: EFC)[17]はECLのカバーできない超前方、後方において電子と光子のエネルギーを測定を行い、ルミノシティモニタの役目を果たす。EFCは衝突点から前方 60cm と後方 43.5cm に設置されており、放射線耐性が高い BGO(Bi₄Ge₃O₁₂)結晶を用いている。EFC のカバーする領域は 6.4° < θ < 11.5°(前方)、および 6.4° < θ < 11.5°(後方)である。エネルギー分解能は 8GeV で 7.3%、3.5GeV で 5.8% である。

2.2.9 トリガーシステム、データ収集システム

B 中間子の生成する反応断面積は、バックグラウンドである $e^+e^- \rightarrow q\bar{q}(q = u, d, c, s)$ やバーバー散乱などに比べて小さい。したがって B 中間子である可能性が高いイベントの データを効率よく取得するには、トリガーが必要となる。トリガーシステムの概要を図 2.28 に示す [18]。CDC、TOF、ECL、KLM、EFC の各検出器から主に飛跡、エネルギーの情報 に基づいてトリガー信号が発せられる。発せられたトリガー信号は、グローバルディシジョ ンロジック (GDL) に送られる。GDL は各検出器からのトリガー信号を総合し、2.2 μ sec 以 内にデータ収集の是非を判断する。表 2.3 に物理過程と断面積、トリガーレートを示す。

データ収集システムは、高いトリガーレートでもデッドタイムが少なくなるように、並 列化された構造となっている。図 2.29 はデータ収集システムの概要である。各検出器はト リガー信号を受け取ると、それぞれ検出器毎に読み出した情報をイベントビルダーに送る。 各検出器毎の情報は、イベントビルダーで一つのイベントのデータとしてまとめられる。 まとめられたデータはオンラインコンピュータファームでさらにイベント選別され、高速 磁気テープ装置に記録される。

2.3 モンテカルロ

Belle 実験のモンテカルロは、Geant3ベースの Gsim 用いたフルシミュレーションによって生成される。モンテカルロには、既に測定されたほとんど全ての崩壊をその崩壊分岐比

図 2.28: トリガーシステム

図 2.29: データ収集システム

図 2.30: 各検出器の粒子識別を行う運動量領域

に従って含む BB ジェネリックモンテカルロ、 $e^+e^- \rightarrow q\bar{q}(q = u, d, c, s)$ の qq モンテカル ロ、特定の崩壊過程しか含まないシグナルモンテカルロがある。これらはシグナルの検出 効率を測定したり、バックグラウンドの評価に用いられる。

2.4 *K*と*π*の識別:PID

ここでは本解析に重要な $K \ge \pi$ の識別 (Particle IDentification:PID) について述べる。 $K \ge \pi$ の区別は CDC での dE/dx 測定と、ACC、TOF での情報から行われる。図 2.30 に 各検出器の粒子識別が可能な運動量領域を示す。まず、 $K \ge \pi$ それぞれにについて、各検 出器での測定量に対する確率密度関数を作る。次にトラックごとに確率密度関数から $K \ge$ π を区別する尤度を求める。最後に各測定での尤度を掛け合わせることにより、 $K \ge \pi$ を に対する尤度 $L_{K,\pi}$ と尤度比 $LR(K/\pi)$ が求まる。

$$L_K = L_K^{CDC} \times L_K^{ACC} \times L_K^{TOF}$$
(2.5)

$$L_{\pi} = L_{\pi}^{CDC} \times L_{\pi}^{ACC} \times L_{\pi}^{TOF}$$
(2.6)

$$LR(K/\pi) = \frac{L_K}{L_K + L_\pi} \tag{2.7}$$

(2.8)

 $LR(K/\pi)$ が1に近ければ K、0に近ければ π である可能性が高い。 $K \ge \pi$ の識別性能は $D^* \to D^0 \pi^+, D^0 \to K^- \pi^+$ という崩壊過程によって評価できる。この崩壊は $D^* \ge D^0$ の質量が非常に近いために π^+ が遅い速度で生成されることや、 $D^0 \to K\pi$ の崩壊分岐比が大きいことなどから、粒子識別を行わなくてもシグナルを抽出できるからである。図 2.31 に $K \ge \pi$ についての尤度比 $LR(K/\pi)$ と運動量の関係を示す。4GeV 以下で $K \ge \pi$ が分離されている。

図 2.31: 運動量と尤度比の関係。赤が K で青が π である。

第3章 $B^- \rightarrow D_1 K^-$ の解析

この論文では $B^- \to D_1 K^-$ の解析を行い、CP 非保存角 ϕ_3 の情報を持つパラメータであ る CP 非対称度 A_1 と崩壊分岐比の比 \mathcal{R}_1 を求める。D 中間子の CP-even の固有状態 D_1 は、 $D_1 \to K^+ K^-$ と $D_1 \to \pi^+ \pi^-$ から再構成する。それぞれに対し Dの崩壊まで含めた過程を $B^- \to [K^- K^+]_D K^-$ 、 $B^- \to [\pi^- \pi^+]_D K^-$ とかく。特に断りがない場合、共役な崩壊も含む ものとする。また同時に $B^- \to [\pi^- \pi^+]_D K^-$ 、 $B^- \to D_1 \pi^-$ 、 $B^- \to [K^- \pi^+]_D \pi^-$ の解析も 行う。これらの過程は崩壊の様子がよく似ており、同じような手法で解析が行える。従っ て解析の妥当性を確認したり、比をとることにより系統誤差を相殺することができる。解 析を行う際はバイアスがかかるのを防ぐため、 $B^- \to D_1 K^-$ のシグナル領域での分布を見 ずに、イベントの選択基準やシグナルの導出方法を決定する。こういった解析手法はブラ インド解析と呼ばれる。以下この章ではイベントの選択基準、シグナルの抽出方法、シグ ナルのイベント数の測定について述べる。

3.1 データサンプル

この解析では Belle 実験で収集された、357fb⁻¹のデータを用いる。これは 388×10⁶ 個の $B\bar{B}$ ペアに対応する。

3.2 イベントの再構成

シグナルのイベント数の測定は、検出器で測定される粒子から崩壊を再構成することに よって行われる。BやDはすぐに崩壊するので、この解析で終状態の粒子は K^{\pm} と π^{\pm} であ り、全て荷電粒子である。飛跡の測定から運動量を求め、粒子識別によってKや π である として固定される質量からエネルギーを求める。ここで求まった4元運動量を足し合わせ て崩壊前の粒子を運動学的に再構成することによって、崩壊を再構成する。

3.3 イベントの選択

3.3.1 荷電粒子の飛跡

- |dr| < 1cm
- |dz| < 5cm

ビームからのバックグラウンドを減らすために、荷電粒子の飛跡はビームパイプの近くを 通ることが要求される。衝突点を原点としてビーム軸方向をz軸とし、飛跡とz軸の最近 接距離 dr が 1cm 以内、最近接点でのz座標 dz が 5cm 以内であることを要求する。

3.3.2 D⁰の再構成

- $K^{\pm}: LR(K/\pi) > 0.3$
- π^{\pm} : $LR(K/\pi) < 0.7$
- 再構成した D⁰の不変質量: |M^{rec}_{D0} M^{nominal}| < 15MeV

 D^0 は電荷の異なる二つの荷電粒子から再構成される。Dから崩壊した K に対しては尤度比: $LR(K/\pi) > 0.3$ (検出効率 93%、誤識別率 15%)、 π に対しては $LR(K/\pi) < 0.7$ (検出 効率 93%、誤識別率 17%) であることを要求する。

再構成に用いる粒子に粒子識別の条件を課した後、D⁰の不変質量を再構成する。再構成 した D⁰の不変質量の分布を二つのガウシアンの和でフィットすると、分解能が 5MeV 程 度であった。再構成した D⁰の不変質量と、D⁰粒子の静止質量 (M_{D⁰}^{nominal})の差に、分解能 の 3 倍以内である 15MeV 以内であることを要求する。(図 3.1 左を参照。)

3.3.3 B⁻の再構成

- $K : LR(K/\pi) > 0.8$
- $\pi : LR(K/\pi) < 0.8$
- $|M_{\rm bc} M_{B^-}^{nominal}| < 7.8 {\rm MeV}$

B⁻ は再構成した *D*⁰ と *K*⁻、または *D*⁰ と π⁻ から再構成される。このときの *K*⁻ や π⁻ のことをプロンプト粒子と呼ぶ。粒子の識別には、プロンプト粒子 *K*⁻、π⁻ にそれぞれ *LR*(*K*/π) > 0.8(検出効率 76%、誤識別率 5%)、*LR*(*K*/π) < 0.8(検出効率 95%、誤識別率 15%)である事を課す。*B*⁻ → *D*⁰π⁻ は *B*⁻ → *D*⁰*K*⁻ に対して崩壊分岐比が大きく、バック グラウンドとなる。このため *D*を構成する *K*⁻ よりも厳しい選択基準を課している。*B*⁻ の イベントであることを特定するためには、エネルギー差 Δ*E* とビームコンストレイント質 量 *M*_{bc} という、*e*⁺*e*⁻ の重心系で計算される二つの量を用いる。*D*、プロンプト*K*(π) のエ ネルギーをそれぞれ *E*_D、*E*_{*K*(π)}、ビームのエネルギーから求めた *B* が持つべきエネルギー を *E*_{beam} とすると、Δ*E* は Δ*E* = *E*_D + *E*_{*K*(π)} - *E*_{beam} と定義される。これは再構成した *B* のエネルギーと *B* が持つべきエネルギーの差であり、エネルギーの保存を意味する。正し く崩壊が再構成された場合、Δ*E* は 0GeVにピークを持つ。*M*_{bc} は *D*、プロンプト*K*(π) の 運動量をそれぞれ *p*_D、*p*_{*K*(π)} とすると、*M*_{bc} = $\sqrt{E_{beam}^2 - (\vec{p}_D + \vec{p}_{K(\pi)})^2}$ と定義される。こ れは *B* のエネルギーをビームのエネルギーで置き換えたものであり、運動量の保存を意味 する。正しく崩壊が再構成された場合、*M*_{bc} は B 中間子の質量である 5.28GeV にピーク を持つ分布となる。 再構成した M_{bc} の分布をガウシアンでフィットすると、分解能が 2.6MeV 程度であった。 再構成した M_{bc} の不変質量と、 B^- 粒子の静止質量 $(M_{B^-}^{nominal})$ の差には、分解能の 3 倍以 内である 7.8MeV 以内であることを要求する。(図 3.1 中央を参照。)

*BB*ペアは一つのイベントで二つ以上生成されない。したがって一つのイベントに対して、選択条件を満たす二つ以上の*B*⁻の候補がある場合、

$$\chi^{2} = \frac{(M_{D}^{rec} - M_{D}^{nominal})^{2}}{\sigma_{M_{D}}^{2}} + \frac{(M_{bc}^{rec} - M_{B^{-}}^{nominal})^{2}}{\sigma_{M_{bc}}^{2}}$$
(3.1)

によって定義される χ^2 が一番小さいものだけを B^- の候補として選択する。ここで σ_{M_D} 、 $\sigma_{M_{bc}}$ は M_D 、 M_{bc} の分布から求まる分解能である。

イベントの選択に用いる M_D, M_{bc} の分布と、 ΔE の分布を図 3.1 に示す。青い線は分解能の 3 倍であり、この領域の外のイベントは除去する。

図 3.1: $B^- \to [K^-K^+]_D K^-(\mathbb{L}), B^- \to [\pi^-\pi^+]_D K^-(\mathbb{T})$ のシグナルモンテカルロに対す る $M_D, M_{\rm bc}, \Delta E$ の分布

3.3.4 キネマティック フィット

Δ*E*のレゾリューションをよくするため、バーテックスフィット、マスコンストレイント フィットを試した。バーテックスフィットは崩壊後の粒子が一点から崩壊したという制限を 課して、運動量を計算し直す方法である。マスコンストレイントフィットは崩壊後の粒子の

図 3.2: $B^- \rightarrow [K^-K^+]_D K^-$ におけるマスコンストレイントフィット、バーテックスフィッ ト後の ΔE の分布。それぞれ固定なし(左上)、D の崩壊点を固定(中上)、B、D の崩壊 点を固定(右上)、B の崩壊点を固定(左下)、D の質量を固定(中下)、B、D の崩壊点と D の質量を固定(右下)である。

運動量の総和から求まる不変質量が、崩壊前の親粒子の質量に一致するという制限を課し て、運動量を計算し直す方法である。 D^0 の崩壊点を固定、 B^- の崩壊点を固定、 D^0 の質量 を固定した場合の ΔE の分布を図 3.2 ($B^- \rightarrow [K^-K^+]_D K^-$)、図 3.3 ($B^- \rightarrow [\pi^-\pi^+]_D K^-$) に示す。一番分解能が小さくなる、 D^0 の質量を固定する D マスコンストレイントフィット を用いる。

3.3.5 コンティニュウムバックグラウンドの除去

- $B^- \to [K^- K^+]_D K^-$: LR > 0.45
- $B^- \to [\pi^- \pi^+]_D K^-$: LR > 0.75
- $B^- \to [K^- \pi^+]_D K^-$: LR > 0.15

 $\Upsilon(4S)$ は非常に細い共鳴状態である。そのため共鳴状態のエネルギーからずれた場合、 $e^+e^- \rightarrow q\bar{q}(q = u, d, c, s)$ の過程がほとんどとなる。図 3.4 のようにこのイベントは反応断 面積が大きく、 ΔE に一様に分布するので、解析において大きなバックグラウンドとなる。 このバックグラウンドはコンティニュウムバックグラウンドと呼ばれる。

図 3.3: $B^- \rightarrow [\pi^-\pi^+]_D K^-$ におけるマスコンストレイントフィット、バーテックスフィット 後の ΔE の分布。それぞれ固定なし(左上)、D の崩壊点を固定(中上)、B、D の崩壊点 を固定(右上)、B の崩壊点を固定(左下)、D の質量を固定(中下)、B、D の崩壊点とD の質量を固定(右下)である。

図 3.4: シグナル(青)、コンティニュウムバックグラウンド(赤:除去前、緑:除去後)の モンテカルロの ΔE 分布。 $(B^- \rightarrow [\pi^- \pi^+]_D K^-)$

KSFWと $\cos \theta_B$ によるイベントの区別

B イベントとコンティニュウムバックグラウンドの区別は、イベントの形状を用いて区別する事ができる。<math>B イベントは、Bがほぼ静止して生成されるため、Bから崩壊してで きる粒子は球状の形状となる。一方コンティニュウムイベントは、クォーク対が大きな運動 量を持って生成されるので、真逆の方向を向いたジェットの形状となる(図 3.5、左、中)。 イベントの形状はスーパーフォックスウォルフラムモーメントを用いた、KSFW(Kakuno's Super Fox Wolfram moments) によってあらわすことができる [19][20][21]。これを用いてBイベントとコンティニュウムイベントに対して、KSFW の尤度比 LR_{KSFW} が求まる。さ らに $e^+e^- \rightarrow \Upsilon(4S)$ の反応はベクター結合であること、 $\Upsilon(4S)$ はスピン1なので、 $B\bar{B}$ ペ アは軌道角運動量が1で生成されることから、Bの球面調和関数は $Y_{1,\pm1}$ である。従って $\Upsilon(4S)$ の静止系においてビーム軸とBの飛行方向の間の角度を θ_B とすると、Bの角度分 布は $\sin^2 \theta_B$ に比例する。一方コンティニュウムイベントの角度分布はだいたい一様である (図 3.5、右)。 $\cos \theta_B$ を使って、B イベントとコンティニュウムイベントの確率密度関数、そして尤度比を求めることができる。

図 3.5: 左、中:Bイベントとコンティニュウムバックグラウンドのイベントの形状。右: Bイベント(青)とコンティニュウムバックグラウンド(赤)の $\cos \theta_B$ の分布。

図 3.6 に LR_{KSFW} 、 $LR_{\cos\theta_B}$ の尤度比の分布を示す。赤がコンティニュウムである qq モンテカルロ、青がシグナル、緑は $B\bar{B}$ ジェネリックモンテカルロである。KSFW と $\cos\theta_B$ の尤度比を合わせて、Bイベントとコンティニュウムイベントに対する尤度比が得られる。

$$LR = \frac{LR_{KSFW} \times LR_{\cos\theta_B}}{LR_{KSFW} \times LR_{\cos\theta_B} + (1 - LR_{KSFW}) \times (1 - LR_{\cos\theta_B})}$$
(3.2)

フィギュアオブメリットによる選択基準の決定

前述の尤度比を用いてイベントの選択を行うが、選択に用いる値はフィギュアオブメリット (Figure of Merit : FoM)を用いて最適化される。FoM はシグナルとバックグラウンドの イベント数を N_{sig}, N_{bkg} とすると

$$FoM = \frac{N_{sig}}{\sqrt{N_{sig} + N_{bkg}}} \tag{3.3}$$

図 3.6: $B^- \rightarrow [K^-K^+]_D K^-$ における KSFW と $\cos \theta_B$ の尤度比の分布

として表される。 $\sqrt{N_{sig} + N_{bkg}}$ はシグナルの統計誤差とほぼ一致する。統計誤差に対して、 シグナルのイベント数が最大となるような値で選択を行えば良い。

モンテカルロを用いて、ΔEの2.5σ以内の領域にあると期待される、シグナルとバック グラウンドのイベント数を見積もる。シグナルの数はシグナルモンテカルロ用いて、

 $N_{sig} = N_{B^+B^-} \times (B \sigma)$ 崩壊分岐比)×(D の崩壊分岐比)×(イベント選択後の検出効率) (3.4)

と見積もることができる。 N_{B+B^-} はデータサンプルに対する B^+B^- の数である。バックグ ラウンドの数は qq モンテカルロ、 $B\bar{B}$ ジェネリックモンテカルロを用いて見積もる。バッ クグラウンドとして考えるのはコンティニュウムバックグラウンドの他、 $B\bar{B}$ バックグラウ ンドである。 $B\bar{B}$ バックグラウンドについては節(3.4.1)で述べるが、B がシグナル以外 へ崩壊するイベントである。ジェネリックモンテカルロをデータサンプルのイベント数に スケールし、シグナルのイベント選択を行えば、選択後のバックグラウンドのイベント数 が分かる。以上のようにシグナルのイベント数と、コンティニュウムバックグラウンドと $B\bar{B}$ バックグラウンドからなるバックグラウンドのイベント数が見積もられる。図 3.8 に尤 度比と FoM の分布を示す。 $B^- \rightarrow [K^-K^+]_D K^-$ に対し LR > 0.45、 $B^- \rightarrow [\pi^-\pi^+]_D K^-$ に 対し LR > 0.75、 $B^- \rightarrow [K^-\pi^+]_D K^-$ に対し LR > 0.15を課す。表 3.1 にコンティニュウム バックグラウンドの抑制を行う前後でのシグナルの保持率、コンティニュウムバックグラ ウンドの除去率を示す。系統誤差を相殺するため、 $B^- \rightarrow D^0\pi^-$ 過程には、 $B^- \rightarrow D^0 K^-$ 過程で最適化した値を用いる。

図 3.7: $B^- \rightarrow [K^-K^+]_D K^-$ 、 $B^- \rightarrow [\pi^-\pi^+]_D K^-$ における(左)KSFW と $\cos \theta_B$ を合わせ た尤度比 *LR*の分布。イベント数は1に規格化してある。(右)FoM の分布。矢印に示した 位置で選択を行う。

図 3.8: $B^- \rightarrow [K^-\pi^+]_D K^-$ における(左)KSFW と $\cos \theta_B$ を合わせた尤度比 *LR* の分布。 イベント数は1に規格化してある。(右)FoM の分布。矢印に示した位置で選択を行う。

崩壊過程	LR	シグナルの保持率	バックグラウンドの除去率	FoM
$B^- \to [K^- K^+]_D K^-$	0.45	0.86	0.82	10.2
$B^- \to [\pi^- \pi^+]_D K^-$	0.75	0.68	0.95	4.9
$B^- \to [K^- \pi^+]_D K^-$	0.15	0.96	0.53	41.1

表 3.1: 各崩壊過程に対するコンティニュウムイベントの除去。シグナルの保持率はコン ティニュウムイベントの除去前後でのイベント数の比であり、バックグラウンドの除去率 は1-(コンティニュウムイベントの除去前後でのイベント数の比)である。

3.3.6 ピーキングバックグラウンド

 ΔE の値は中間状態に依存しないため、シグナルと終状態が同じ崩壊は、シグナルと同じく $\Delta E = 0$ にピークを持つピーキングバックグラウンドとなる。

 $B^- \rightarrow [\pi^- \pi^+]_D K^-$ に対する $B^- \rightarrow [K^- \pi^+]_D \pi^-$ バックグラウンド

• $B^- \to [\pi^- \pi^+]_D K^- : |M_{K^- \pi^+} - M_D^{nominal}| > 25 (MeV)$

 $B^- \to [K^-\pi^+]_D\pi^- \ \text{tb} B^- \to [\pi^-\pi^+]_DK^- \ \text{click}$ 状態をもつ。 $B^- \to [\pi^-\pi^+]_DK^- \ \text{op}$ がいて、 $B^- \to [K^-\pi^+]_D\pi^- \ \text{od}$ イベントをプロンプト粒子 $\pi^- \ \text{cl} D$ から崩壊した $\pi^+ \ \text{cl}$ み違えて再構成し、不変質量が $M_D^{nominal}$ から 15MeV 以内の値を持つと、ピーキングバッ クグラウンドとなる(図 3.9)。

これを取り除くため $B^- \to [\pi^-\pi^+]_D K^-$ の解析では、プロンプト $K^- \ge \pi^+$ の不変質量 (交換質量) が D^0 の質量となるものは、 $B^- \to [K^-\pi^+]_D \pi^-$ が多いので取り除く。図 3.10 は $B^- \to [K^-\pi^+]_D \pi^-$ のシグナルモンテカルロと $B^- \to [\pi^-\pi^+]_D K^-$ のシグナルモンテカ ルロを $B^- \to [\pi^-\pi^+]_D K^-$ として解析した場合の交換質量 $M_{K\pi} \ge \Delta E$ の分布である。 $M_{K\pi}$

図 3.9: シグナル $(B^- \rightarrow [\pi^- \pi^+]_D K^-)$ とピーキングバックグラウンド $(B^- \rightarrow [K^- \pi^+]_D \pi^-)$

が D^0 の質量より 5 σ 以上離れているものを選択すると、シグナルはほぼ 100% 保持された まま、 $B^- \rightarrow [K^-\pi^+]_D\pi^-$ のピーキングバックグラウンドは 95% 除去される。

希崩壊バックグラウンド

- $B^- \to [K^- K^+]_D K^-:50 \pm 12$
- $B^- \to [\pi^- \pi^+]_D K^-:6\pm 7$

BからDを経ずにシグナルと同じ終状態へ崩壊する過程は、ピーキングバックグラウンド となる。これらは崩壊分岐比が小さいものが多く、希崩壊バックグラウンドと呼ばれる。 共鳴状態を経ずに K やπ に三体崩壊する過程や、K* やφなどの共鳴状態を経る過程がこ れにあたる。希崩壊バックグラウンドはイベント数を見積もってシグナルのイベント数か ら差し引く。しかしこれらの過程は崩壊分岐比が精度よく測定されておらず、モンテカル ロでイベント数を見積もることはできない。希崩壊バックグラウンドは、D⁰の不変質量の シグナル領域付近の狭い領域で、ほぼ一様に分布していると考えられる。従ってシグナル 領域の両脇(サイドバンド領域)に含まれるバックグラウンドのイベント数を見積もれば、 シグナル領域に含まれるバックグラウンドを評価できる。

図 3.11 に *D* の不変質量のシグナル領域、サイドバンド領域を示す。各サイドバンド領 域はシグナル領域と同じ広さをとる。 $B^- \rightarrow [K^-K^+]_D K^-$ は 1.77-1.80、1.80-1.83、1.90-1.93(GeV)、 $B^- \rightarrow [\pi^-\pi^+]_D K^-$ は 1.80-1.83、1.90-1.93、1.93-1.96(GeV) のサイドバンド領 域をとる。サイドバンド領域に対する Dマスコンストレイントフィットは、サイドバンド領域 の中心の値で D の不変質量を固定した。 $B^- \rightarrow [K^-K^+]_D K^-$ の右側と、 $B^- \rightarrow [\pi^-\pi^+]_D K^-$ の左側にあるピークは、 $D^0 \rightarrow K^-\pi^+$ のイベントである。このイベントが入ってくる領域 は、 D^0 の不変質量でほぼ一様に分布していると考えられる希崩壊バックグラウンドの評価 には不適当なので、サイドバンド領域から除外した。

各サイドバンド領域で、シグナルの導出に用いる関数と同じフィット関数でΔ*E*をフィットして、希崩壊バックグラウンドの数を評価する。フィット関数の詳細は節 3.4 で述べるが、ピーキングバックグラウンドの形は図 3.15 非共鳴バックグラウンドのモンテカルロから、*BB*バックグラウンドの形はサイドバンド領域のモンテカルロから、コンティニュウムバックグラウンドは qq モンテカルロから直線の傾きを固定する。図 3.12、図 3.13 に各サイドバンド領域のΔ*E*のフィット結果を示す。フィットの成分は、ピーキングバックグラ

図 3.10: $B^- \rightarrow [\pi^-\pi^+]_D K^-$ に対する $B^- \rightarrow [K^-\pi^+]_D \pi^-$ バックグラウンド。 $B^- \rightarrow [K^-\pi^+]_D \pi^-$ のシグナルモンテカルロ(上段)と $B^- \rightarrow [\pi^-\pi^+]_D K^-$ のシグナルモンテカル ロ (下段)を $B^- \rightarrow [\pi^-\pi^+]_D K^-$ として解析した場合の交換質量 $M_{K\pi}$ (左列) と ΔE (右列)の分布。青が除去前、赤が除去後の分布である。

ウンド(赤)、 $KK\pi$ バックグラウンド(青)、プロンプト粒子が π である $B\bar{B}$ バックグラウンド(緑)、プロンプト粒子が π 以外の $B\bar{B}$ バックグラウンド(灰色)、コンティニュウムバックグラウンド(青)である。

以上より図 3.14 のように、 D^0 の不変質量と各サイドバンド領域で評価したバックグラ ウンドの数の関係が得られる。これを直線でフィットしてフィット関数をシグナル領域で積 分すれば、シグナル領域でのバックグラウンドの数が評価できる。シグナル領域で予測さ れるピーキングバックグラウンドは $B^- \rightarrow [K^-K^+]_D K^-$ では 50 ± 12 、 $B^- \rightarrow [\pi^-\pi^+]_D K^-$ では 6 ± 7 である。

図 3.11: $B^- \to [K^-K^+]_D K^-(\underline{x}) \ge B^- \to [\pi^-\pi^+]_D K^-(\underline{x}) \cap D^0$ 不変質量における、シグ ナル領域(赤) とサイドバンド領域(青)。

図 3.12: $B^- \rightarrow [K^-K^+]_D K^-$ の各サイドバンド領域に対して ΔE フィットでバックグラウンドを見積もった。1.77-1.88GeV では 39±13 (左)、1.80-1.83GeV では 39±13 (中)、1.90-1.93GeV では 60±21、(右) である。

3.3.7 ダリッツ平面を用いた除去領域の導入

• $B^- \to [\pi^- \pi^+]_D K^-$: $M^2(K_{prompt}, \pi) < 1.5$

図 3.16、図 3.17 にダリッツ平面の分布を示す。x 軸は D の不変質量の二乗 M_D^2 、y 軸は交換質量の二乗 $M^2(K_{prompt}, K/\pi)$ (プロンプト K^- と D^0 を再構成した K^+/π^+ の不変質量)

図 3.13: $B^- \rightarrow [\pi^- \pi^+]_D K^-$ の各サイドバンド領域に対して ΔE フィットでバックグラウンドを見積もった。1.80-1.83GeV ではでは 6±11 (左)、1.90-1.93GeV では 0±13 (中)、1.93-1.96GeV では 11±9 (右) である。

図 3.14: $B^- \rightarrow [K^-K^+]_D K^-$ (右)、 $B^- \rightarrow [\pi^-\pi^+]_D K^-$ (左)の各サイドバンド領域の フィット結果(黒丸)から評価された、シグナル領域(赤線)のピーキングバックグラン ド(赤)。

図 3.15: $B^- \to K^- K^+ K^-, B^- \to \pi^- \pi^+ K^-$ モンテカルロ の ΔE 分布

である。左の図はデータ、右は B*B* モンテカルロである。B*B* モンテカルロには、崩壊分岐 比の小さい希崩壊は含まれていない。もし共鳴状態が存在した場合、ダリッツ平面に筋状 の模様が生じる。これは粒子を組み合わせて得た不変質量が親粒子の質量となるからであ る。シグナル領域にかかる共鳴状態を取り除けば、効果的にバックグラウンドを除去でき る可能性がある。

交換質量にいくつかの除去領域を課し、フィギュアオブメリット FoM を求めた結果を 表3.2 に示す。図 3.16、図 3.17の直線が除去領域に対応する。フィギュアオブメリットは ΔE の分解能の2.5 倍の領域に含まれるシグナル、コンティニュウムバックグラウンド、 $B\bar{B}$ バックグラウンド、ピーキングバックグラウンドを評価して求める。シグナル、コンティ ニュウムバックグラウンド、 $B\bar{B}$ バックグラウンドはモンテカルロから、ピーキングバッ クグラウンドは節 3.3.6 で用いた方法から求める。この結果から $B^- \rightarrow [K^-K^+]_D K^-$ には 除去領域の導入は行わず、 $B^- \rightarrow [\pi^-\pi^+]_D K^-$ には $M_{K\pi} < 1.5$ の除去領域を導入する。

図 3.16: $B^- \rightarrow [K^-K^+]_D K^-$ のデータ(左)とモンテカルロ(右)に対するダリッツ平面

図 3.17: $B^- \rightarrow [\pi^- \pi^+]_D K^-$ のデータ(左)とモンテカルロ(右)に対するダリッツ平面

崩壊過程	除去領域	FoM
	なし	9.5
	$ M(K_{prompt}, K) - 3.415 < 0.020$	9.4
$B^- \to [K^- K^+]_D K^-$	$ M(K_{prompt}, K) - 3.097 < 0.020$	9.5
	$ M(K_{prompt}, K) - 1.865 < 0.015$	9.5
	$M(K_{prompt}, K) - 1.865 < 1.9$	9.4
	なし	4.3
$B^- \to [\pi^- \pi^+]_D K^-$	$M(K_{prompt}, \pi) > 4.9$	3.9
	$M(K_{prompt}, \pi) < 1.5$	4.8

表 3.2: ダリッツ平面による除去領域の導入

3.4 シグナルのイベント数の導出

シグナルの抽出は、前節のイベントの選択基準を満たす ΔE の分布をフィットして行う。 フィットはビンを分けずに最大尤度法(Extended unbinned maximum likelihood method) で行う。 $B^- \rightarrow D_1 K^- / \pi^-$ のシグナルの導出は、 $D \rightarrow K^- K^+ \ge D \rightarrow \pi^- \pi^+$ のイベントを 足し合わせた ΔE の分布をフィットして行う。

3.4.1 $B^- ightarrow D^0 \pi^-$ のフィット

 $B^- \to D^0 \pi^-$ のフィット関数は、シグナル、コンティニュウムバックグラウンド、 $B\bar{B}$ バック グラウンドの3成分からなる。シグナルは幅の異なる二つのガウシアンの和でフィットする。 二つのガウシアンの幅の比と面積の比は、 $B^- \to [K^- \pi^+]_D \pi^-$ は固定せず、 $B^- \to D_1 \pi^-$ 、 $B^- \to [K^- K^+]_D \pi^-$ 、 $B^- \to [\pi^- \pi^+]_D \pi^-$ は $B^- \to [K^- \pi^+]_D \pi^-$ のフィット結果で固定する。

コンティニュウムバックグラウンドは、Δ*E*のシグナル領域で一様に分布しているので 直線でフィットする。パラメータは全て固定しない。

 $B\bar{B}$ バックグラウンドとは、シグナル以外のBの崩壊であり、主に $B^- \to D\rho$ 、 $B^- \to D^*\pi^-$ などである。 $\pi や \gamma を検出できなかった場合、\Delta E の負の領域にピークをもつ。図$ $3.18 にモンテカルロでの <math>B\bar{B}$ バックグラウンドの分布を示す。 $B\bar{B}$ バックグラウンドは、ジェネリックモンテカルロからモデル化される、滑らかなヒストグラムでフィットする。 $B^- \to [K^-\pi^+]_D\pi^-, B^- \to D_1\pi^-, B^- \to [K^-K^+]_D\pi^-, B^- \to [\pi^-\pi^+]_D\pi^-$ それぞれの フィット結果を図 3.19、3.21、3.20、3.22 に示す。

フィットの妥当性を調べるため、シグナルのイベント数 N_{sig} から以下のように崩壊分岐 比を見積もった。

 $N_{B^+B^-}$ はデータサンプルに対する B^+B^- の数である。それぞれの D^0 の崩壊、 $D^0 \to K^-\pi^+$ 、 $D^0 \to K^-K^+$ 、 $D^0 \to \pi^-\pi^+$ の崩壊分岐比は PDG の値を用いた。誤差はシグナルの統計誤 差のみを考慮した。こうして得られた崩壊分岐比を PDG の値と比較して標準偏差を求め た。各過程のシグナルのイベント数、測定された崩壊分岐比、PDG の崩壊分岐比、標準偏 差を表 3.3 に示す。

図 3.18: $B^- \to [K^-\pi^+]_D\pi^-$ (左) と $B^- \to [K^-\pi^+]_DK^-$ (右) の $B\bar{B}$ バックグラウンド。 右の図において、緑:プロンプト粒子が π である $B\bar{B}$ バックグラウンド、灰色:プロンプト 粒子が π 以外である $B\bar{B}$ バックグラウンド、青: $B \to D\pi$ を $B \to DK$ と誤識別したバッ クグラウンド、の各成分に分けられる。

図 3.19: $B^- \rightarrow [K^-\pi^+]_D\pi^-$ に対する ΔE のフィット結果

図 3.20: $B^- \rightarrow D_1 \pi^-$ に対する ΔE のフィット結果

図 3.21: $B^- \rightarrow [K^-K^+]_D \pi^-$ に対する ΔE のフィット結果

図 3.22: $B^- \rightarrow [\pi^- \pi^+]_D \pi^-$ に対する ΔE のフィット結果

崩壊過程	シグナル数	崩壊分岐比 (測定値)	崩壞分岐比 (PDG)	標準偏差
$B^- \to [K^- \pi^+]_D \pi^-$	30531 ± 200	$(4.74 \pm 0.03) \times 10^{-3}$	$(4.84 \pm 0.15) \times 10^{-3}$	-0.6σ
$B^- \rightarrow D_1 \pi^-$	3700 ± 70	5.09 ± 0.10) $\times 10^{-3}$	$(3.92 \pm 0.68) \times 10^{-3}$	$+1.7\sigma$
$B^- \to [K^- K^+]_D \pi^-$	2767 ± 58	$(5.04\pm0.11) \times 10^{-3}$	$(3.92 \pm 0.68) \times 10^{-3}$	$+1.6\sigma$
$B^- \to [\pi^- \pi^+]_D \pi^-$	$934{\pm}38$	$(5.23\pm0.21) \times 10^{-3}$	$(3.92 \pm 0.68) \times 10^{-3}$	$+1.8\sigma$

表 3.3: $B^- \rightarrow D^0 \pi^-$ 過程のフィット結果から求めたイベント数と崩壊分岐比

3.4.2 $B^- \rightarrow D^0 K^-$ のフィット

 $B^- \to D^0 K^- \& B^- \to D^0 \pi^-$ のフィットについて異なる点は二つある。一つはプロンプトである π (Bから崩壊する π)が、K と間違って識別されることによる $B^- \to D^0 \pi^-$ のバックグラウンドが存在することである (図 3.18)。これを $D\pi$ フィードアクロスと呼ぶ。 π である粒子に K の質量を当てはめることによって、 ΔE は正の方向にシフトする。もう一つはシグナルのイベント数が少ないため、希崩壊バックグラウンドを見積もる必要があることである。

 $B^- \to D^0 \pi^-$ のフィット関数は、シグナル、コンティニュウムバックグラウンド、プロ ンプト粒子が π である $B\bar{B}$ バックグラウンド、プロンプト粒子が π 以外である $B\bar{B}$ バッ クグラウンド、 $D\pi$ フィードアクロス、希崩壊バックグラウンドの6成分からなる。シグ ナルは二つのガウシアンの和でフィットする。二つのガウシアンの幅の比と面積の比は、 $B^- \to [K^-\pi^+]_D\pi^-$ のフィット結果で固定する。コンティニュウムバックグラウンドは、直 線でフィットし、パラメータは全て固定しない。

BBバックグラウンドは、ジェネリックモンテカルロからモデル化される滑らかなヒス トグラムでフィットする。ただし図 3.18 のようにプロンプト粒子が π であるものと、それ 以外の二つの成分に分けてフィットする。これは現在のイベント選択 ($LR(K/\pi) > 0.8$) において、プロンプトである π を K と誤って識別する割合が、モンテカルロとデータで 2.5 倍程度異なるためである。プロンプト粒子が π である $B\bar{B}$ バックグラウンドは、主に $B^- \to D\rho, B^- \to D^*\pi^-$ 、プロンプト粒子が π 以外である $B\bar{B}$ バックグラウンドは、主に $B^- \to DK^*, B^- \to D^*K^-$ である。

 $D\pi$ フィードアクロスは、 $B^- \to D^0 \pi^-$ が $B^- \to D^0 K^-$ として識別されるバックグラウンドである。粒子の識別を誤っているので左右非対称な形となる。 $D\pi$ フィードアクロスは、中心が同じで左右で幅の異なるガウシアンを二つ足し合わせた関数でフィットする。次節で述べるが、中心値と面積以外は全て $B^- \to [K^- \pi^+]_D K^-$ のデータから固定する。

希崩壊ピーキングバックグラウンドはダブルガウシアンでフィットする。面積は節 3.3.6 で評価した数で、それ以外の全てのパラメータは、非共鳴のモンテカルロから固定する。 シグナルと異なるフィット関数を用いるのは、図 3.15 のようにガウシアンの幅がシグナル のより広くなるからである。これは D を経ていない希崩壊バックグラウンドに、Dマスコ ンストレイントフィットを行った影響である。

$\mathbf{D}\pi$ **フィードアクロス**

 $D\pi$ フィードアクロス成分は、データとモンテカルロで若干形が異なるため以下のよう にして得る。まずデータサンプルに対し、プロンプト粒子に K の質量を当てはめて再構成 する。次にプロンプト粒子が π であることを要求するような粒子識別の選択を行う。こう して得られた分布は、ほとんどのプロンプト粒子が K の質量を当てはめられた π である分 布である。全てのパラメータを自由にしてフィットを行うことは難しいので、モンテカル ロから左右のガウシアンの幅の比を固定してフィットした。図 3.23 に $B^- \to [K^-\pi^+]_D\pi^-$ のシグナルモンテカルロを $B^- \to [K^-\pi^+]_D K^-$ として再構成、イベント選択を行った ΔE の分布を示す。

粒子識別は粒子の運動量や飛行角度に依存するため、粒子識別による選択によって ΔE

図 3.23: $B^- \rightarrow [K^-\pi^+]_D K^-$ に対する $B^- \rightarrow [K^-\pi^+]_D \pi^-$ バックグラウンドの ΔE フィット

図 3.24: プロンプト粒子に対する $LR(K/\pi) < 0.2, 0.4$ の要求により、 $B^- \rightarrow [K^-\pi^+]_D K^-$ と識別された $B^- \rightarrow [K^-\pi^+]_D \pi^-$ の ΔE 分布

の分布の形が変化する場合がある。しかし図 3.24、図 3.25 のようにプロンプト粒子に対す る粒子識別の選択を変化させても、形パラメータの変化はほとんどないことが確認できた。 よって今回はプロンプト粒子に対し、 $LR(K/\pi) < 0.4$ の粒子識別から得た ΔE の分布か ら、 $D\pi$ フィードアクロスの形パラメータを決定することにする。

フィット結果

 $D\pi$ フィードアクロスの形を $B^- \rightarrow [K^-\pi^+]_D K^-$ のデータによって得た値で固定し、フィットを行う。各過程に対するフィット結果を図 3.26、図 3.27、図 3.28、図 3.29 に示す。フィットの成分はシグナル(赤)、 $D\pi$ フィードアクロス(青)、プロンプト粒子が π である $B\bar{B}$ バックグラウンド(緑)、プロンプト粒子が π 以外の $B\bar{B}$ バックグラウンド(灰色)、コンティニュウムバックグラウンド(青)、ピーキンバックグラウンド(茶)である。フィットの妥当性を調べるため、 $B^- \rightarrow D^0\pi^-$ の場合と同様、シグナルのイベント数 N_{sig} から崩壊分岐比を見積もった。シグナルのイベント数と崩壊分岐比,PDG との比較を表 3.4 に示す。

また $D\pi$ フィードアクロスのイベント数と、プロンプト粒子を π と間違って識別する割 合を用いて、 $B^- \rightarrow D^0 \pi^-$ の崩壊分岐比をもとめることができる。 $D\pi$ フィードアクロスの イベント数と崩壊分岐比、PDG との比較を表 3.5 に示す。誤差にはイベント数の統計誤差 と識別を間違う割合の誤差を考慮した。

図 3.25: プロンプト粒子に対する $LR(K/\pi) < 0.6$ 、0.8 の要求により、 $B^- \rightarrow [K^-\pi^+]_D K^-$ と識別された $B^- \rightarrow [K^-\pi^+]_D \pi^-$ の ΔE 分布

崩壊過程	イベント数	崩壞分岐比(測定)	崩壞分岐比 (PDG)	標準偏差
$B^- \to [K^- \pi^+]_D K^-$	1790 ± 59	$(3.50\pm0.12) \times 10^{-4}$	$(4.02 \pm 0.21) \times 10^{-4}$	-2.2σ
$B^- \to D_1 K^-$	271 ± 34	$(4.75 \pm 0.60) \times 10^{-4}$	$(3.62 \pm 0.54) \times 10^{-4}$	$+1.4\sigma$
$B^- \to [K^- K^+]_D K^-$	187 ± 28	$(4.21\pm0.62)\times10^{-4}$	$(3.62 \pm 0.54) \times 10^{-4}$	$+0.7\sigma$
$B^- \to [\pi^- \pi^+]_D K^-$	79 ± 16	$(6.30\pm1.25)\times10^{-4}$	$(3.62 \pm 0.54) \times 10^{-4}$	$+2.0\sigma$

表 3.4: $B^- \rightarrow D^0 K^-$ 過程のフィット結果から求めたイベント数と崩壊分岐比

崩壊過程	Dπ フィード	崩壊分岐比(測定)	崩壞分岐比 (PDG)	標準偏差
$B^- \to [K^- \pi^+]_D K^-$	1457 ± 48	$(4.33 \pm 0.26) \times 10^{-3}$	$(4.84 \pm 0.15) \times 10^{-3}$	-1.7σ
$B^- \to D_1 K^-$	133 ± 19	$(3.54 \pm 0.54) \times 10^{-3}$	$(3.92 \pm 0.68) \times 10^{-3}$	-0.4σ
$B^- \to [K^- K^+]_D K^-$	93±16	$(3.26\pm0.58)\times10^{-3}$	$(3.92 \pm 0.68) \times 10^{-3}$	-0.7σ
$B^- \to [\pi^- \pi^+]_D K^-$	42±11	$(4.70\pm1.29)\times10^{-3}$	$(3.92 \pm 0.68) \times 10^{-3}$	$+0.5\sigma$

表 3.5: Dπ フィードのイベント数と崩壊分岐比

図 3.26: $B^- \rightarrow [K^-\pi^+]_D K^-$ のフィット結果

図 3.27: $B^- \rightarrow D_1 K^-$ のフィット結果

図 3.28: $B^- \rightarrow [K^-K^+]_D K^-$ のフィット結果

図 3.29: $B^- \rightarrow [\pi^- \pi^+]_D K^-$ のフィット結果

3.5 CP 非対称度 A₁ の測定

(1.83) で定義される CP 非対称度 A_1 は、 B^{\pm} に対するシグナルイベントの数 N^{\pm} を用いてかくと、検出効率や Dの崩壊分岐比、 $B\bar{B}$ の数が相殺されて

$$\mathcal{A}_1 = \frac{N^- - N^+}{N^- + N^+} \tag{3.6}$$

とかける。 A_1 の測定は、イベントを電荷で分けて N^- と A_1 をフィットパラメータとして、 B^+ の ΔE 分布と B^- の ΔE 分布を同時にフィットすることによって行う。フィット関数の 形は B^+ と B^- で同じものを用い、イベント数のみ B^+ と B^- で異なる。フィット結果を図 3.30、図 3.31、図 3.32 に示す。 B^- のシグナルが B^+ に比べて多く、直接的な CP の破れが 見られる。

 D_{π} フィードアクロス成分を用いて求めた CP 非対称度 $A_{D\pi}$ 、および $D_{1\pi}$ の CP 非対称 度 (図 3.33) は誤差の範囲で 0 と一致している。これは理論的予測と合致しており、この 解析の妥当性を示している。イベント数と CP 非対称度を表 3.6 にまとめた。

崩壊過程	B ⁻	\mathcal{A}	$D\pi^-$	$\mathcal{A}_{D\pi}$
$B^- \to D_1 K^-$	176 ± 22	0.24 ± 0.08	58 ± 13	-0.13 ± 0.13
$B^- \to [K^- K^+]_D K^-$	125 ± 19	0.25 ± 0.10	$36{\pm}11$	-0.22 ± 0.16
$B^- \to [\pi^- \pi^+]_D K^-$	47 ± 10	0.18 ± 0.15	23 ± 8	0.05 ± 0.23
$B^- \rightarrow D_1 \pi^-$	_	_	1832 ± 48	-0.01 ± 0.02

表 3.6: イベント数と CP 非対称度。統計誤差をともに表示した。

図 3.30: 電荷で分けた $B^- \rightarrow D_1 K^-$ の ΔE の分布

図 3.31: 電荷で分けた $B^- \rightarrow [K^-K^+]_D K^- \mathcal{O} \Delta E \mathcal{O} \partial \pi$

図 3.32: 電荷で分けた $B^- \rightarrow [\pi^- \pi^+]_D K^-$ の ΔE の分布

図 3.33: 電荷で分けた $B^- \rightarrow D_1 \pi^-$ の ΔE の分布

第4章 結果

前節で求めたシグナルの数から \mathcal{R} を求めた後、 \mathcal{R} 、 \mathcal{A} の系統誤差について述べる。各過程の検出効率、シグナル数、 B^- のイベント数、CP 非対称度 \mathcal{A} を表 4.1 に示す。ただし $D \to K^+K^-$ と $D \to \pi^+\pi^-$ から再構成される $B^- \to D_1K^-$ の検出効率は

$$(B^{-} \to [K^{-}K^{+}]_{D}K^{-} \mathcal{O} \notin \mathbb{H} \partial \mathbb{P}) \times \frac{\Gamma(D \to K^{+}K^{-})}{\Gamma(D \to K^{+}K^{-}) + \Gamma(D \to \pi^{+}\pi^{-})} (4.1)$$

+ $(B^{-} \to [\pi^{-}\pi^{+}]_{D}K^{-} \mathcal{O} \notin \mathbb{H} \partial \mathbb{P}) \times \frac{\Gamma(D \to \pi^{+}\pi^{-})}{\Gamma(D \to K^{+}K^{-}) + \Gamma(D \to \pi^{+}\pi^{-})} (4.2)$

として D の崩壊分岐比で比重をかけて求めた。 $B^- \rightarrow D_1 \pi^-$ の場合も同様である。

4.1 崩壊分岐比の比 \mathcal{R}_1

崩壊分岐比の比 \mathcal{R}_1 は、(1.85)、(1.86)、(1.87)よりシグナル数N、検出効率 ϵ を用いて

$$\mathcal{R}_{1} = \frac{N(B^{\pm} \to D_{1}K^{\pm}) \times N(B^{\pm} \to [K\pi]_{D}\pi^{\pm})}{N(B^{\pm} \to D_{1}\pi^{\pm}) \times N(B^{\pm} \to [K\pi]_{D}K^{\pm})}$$
(4.3)

$$\times \quad \frac{\epsilon(B^{\pm} \to D_1 K^{\pm}) \times \epsilon(B^{\pm} \to [K\pi]_D \pi^{\pm})}{\epsilon(B^{\pm} \to D_1 \pi^{\pm}) \times \epsilon(B^{\pm} \to [K\pi]_D K^{\pm})} \tag{4.4}$$

とかける。 \mathcal{R}_1 は

$$\mathcal{R}_1 = 1.27 \pm 0.17 (\text{stat.}) \pm 0.07 (\text{syst.})$$
 (暫定) (4.5)

と求まった。暫定とあるのは、この結果は Belle コラボレーションの承認を経て、ブラインドとしていた部分を解析したばかりのものであり、解析後の結果自体はまだ Belle 公認

崩壊過程	検出効率(%)	シグナル数	B^-	\mathcal{A}
$B^- \to D_1 K^-$	27.6 ± 0.2	271 ± 34	176 ± 22	0.239 ± 0.080
$B^- \to [K^- K^+]_D K^-$	29.2 ± 0.2	187 ± 28	125 ± 19	0.249 ± 0.096
$B^- \to [\pi^- \pi^+]_D K^-$	23.2 ± 0.2	79 ± 15	47 ± 10	$0.184{\pm}0.151$
$B^- \to D_1 \pi^-$	35.2 ± 0.2	3700 ± 70	1832 ± 48	-0.010 ± 0.018
$B^- \to [K^- K^+]_D \pi^-$	36.0 ± 0.2	2767 ± 58	$1358 {\pm} 40$	-0.018 ± 0.020
$B^- \to [\pi^- \pi^+]_D \pi^-$	32.8 ± 0.2	934 ± 38	477 ± 26	0.022 ± 0.037
$B^- \to [K^- \pi^+]_D K^-$	33.9 ± 0.2	1790 ± 59	916 ± 39	0.022 ± 0.027
$B^- \to [K^- \pi^+]_D \pi^-$	42.7 ± 0.3	30531 ± 200	15145 ± 135	-0.008 ± 0.006

表 4.1: 各崩壊過程の検出効率、シグナル数、B⁻のイベント数、CP 非対称度

のものではないためである。以前の Belle 実験の結果 [22] は 275×10^6 の $B\bar{B}$ ペアを用いて $\mathcal{R}_1 = 1.13 \pm 0.16(\text{stat.}) \pm 0.08(\text{syst.})$ であった。また過去の解析結果や他の実験結果から得 られた世界平均は $\mathcal{R}_1 = 1.10 \pm 0.09[23]$ であった。本解析の値とこれらの結果は 1σ 以内で 一致している。世界平均や他の実験での結果等を図 4.1 左に示す。

以下では系統誤差について述べる。R₁の系統誤差は、崩壊分岐比の比をとることにより 大部分が相殺される。残る系統誤差はシグナル導出時のフィットパラメータの固定、ピー キングバックグラウンドの数、粒子識別による検出効率の誤差、シグナルモンテカルロの 統計による検出効率の誤差、Dの崩壊分岐比から生じる誤差である。

フィットパラメータの固定により生じる系統誤差は、固定する値を得たフィット結果を用いて評価する。 ΔE のフィットで固定しているのは、シグナル成分であるダブルガウシアンの幅と面積の比、 $D\pi$ フィードアクロス成分の形パラメータ、ピーキングバックグラウンドの形パラメータである。これらの値はモンテカルロや他の過程のフィット結果から固定している。固定するパラメータをフィット結果で得た値から±1 σ ずらすことによって \mathcal{R}_1 の値の変化を評価した。ピーキングバックグラウンドの数による誤差も、Dの不変質量のサイドバンド領域から評価したバックグラウンドの数を±1 σ ずらすことによる \mathcal{R}_1 の値の変化で評価できる。

粒子識別による検出効率の誤差は、モンテカルロとデータの粒子識別の差によって生じる。これは節 2.4 で述べた $D^* \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$ という崩壊過程を用いて検出効率の誤差を評価する。シグナルモンテカルロの統計による検出効率の誤差は、イベントの選択を行った後に残るシグナル数の統計誤差から生じる。Dの崩壊分岐比は、(4.1) で Dの崩壊分岐比を用いていることから生じる。表 4.2 に各系統誤差の値とそれらを総合した結果を示す。

図 4.1: \mathcal{R}_1 (左) と \mathcal{A}_1 (右) の BaBar、Belle (前回)、CDF による結果と世界平均

系統誤差	$\Delta \mathcal{R}_1$	
フィットパラメータの固定	0.015	系統誤差
ピーキングバックグラウンドの数	0.065	フィットノ
粒子識別	0.028	ピーキン
モンテカルロの統計	0.017	検出器の
Dの崩壊分岐比	0.001	合計
合計	0.074	

系統誤差	$\Delta \mathcal{A}_1$
フィットパラメータの固定	0.003
ピーキングバックグラウンドの数	0.008
検出器の荷電非対称性	0.014
合計	0.016

表 4.3: *A*1 の系統誤差

表 4.2: R₁の系統誤差

4.2 非対称度 A_1

非対称度 A₁ は

$$A_1 = 0.24 \pm 0.08 (\text{stat.}) \pm 0.02 (\text{syst.})$$
 (暫定) (4.6)

と求まった。暫定とあるのは \mathcal{R}_1 と同じ理由によるものである。 $\sqrt{-2\ln(L_0/L_{max})}$ によっ て評価した、統計的有意性は2.7 σ であった。ただし L_0 は $\mathcal{A}_1 = 0$ のときの尤度、 L_{max} は尤 度の最大値である。以前の Belle 実験の結果は $\mathcal{A}_1 = 0.06 \pm 0.14$ (stat.) ± 0.05 (syst.) であっ た。また世界平均は $\mathcal{A}_1 = 0.24 \pm 0.07$ であった。本解析の値はこれらの結果と約 1 σ 以内で 一致している。さらに Belle 実験では初めて、約 3 σ の CP 非対称度が測定された。世界平 均や他の実験での結果等を図 4.1 右に示す。

 A_1 の系統誤差も崩壊分岐比の比をとることにより大部分が相殺される。残る系統誤差は、 シグナルの導出の際のフィットパラメータの固定、ピーキングバックグラウンドの数、検出 器由来の荷電非対称性である。フィットパラメータの固定、ピーキングバックグラウンドの 数による系統誤差の評価方法は \mathcal{R}_1 と同様である。検出器由来の荷電非対称性は、CP 非対称 性がほとんど0であるとされる $B^- \rightarrow [K^-\pi^+]_D\pi^-$ によって評価する。 $B^- \rightarrow [K^-\pi^+]_D\pi^-$ の非対称度は -0.008 ± 0.006 であった。このことから検出器由来の荷電非対称性による系 統誤差の上限を 0.14 とする。表 4.3 に各系統誤差の値とそれらを総合した結果を示す。

第5章 結論

 $B^- \rightarrow D_1 K^-$ は ADS 法で用いる崩壊の中では崩壊分岐比が大きく、精密な測定が可能 である。本解析では Belle 実験で収集された 388×10^6 の $B\bar{B}$ ペアを用いた。解析の結果、 CP 非対称度 A_1 と、崩壊分岐比の比 R_1 が $A_1 = 0.24 \pm 0.08(\text{stat.}) \pm 0.02(\text{syst.})$ 、 $R_1 = 1.27 \pm 0.17(\text{stat.}) \pm 0.07(\text{syst.})$ と求まった(暫定)。どちらも、以前の Belle 実験の結果や 世界平均と矛盾しないものであった。さらに A_1 については、Belle 実験で初めて約 3σ の CP の破れが測定された。この非対称性は CP 非保存角 ϕ_3 に起因するものであり、本解析 は ϕ_3 の精度向上に大きく貢献すると考えられる。

謝辞

まずはじめに指導教官である山本均先生には、世界最高水準の研究環境で物理のパラメー タを直接測定するという、素晴らしい研究テーマを与えてくれたことに深く感謝いたしま す。難解だった解析を進めて行く際に、いつも的確な助言を頂きました。佐貫先生にはグ ループ会議などでたくさんのアドバイスを頂きました。長嶺さんには計算機などの技術的 な面や、解析の詳細な面において多くのサポートをしてもらいました。田窪さんには分か りやすく情報を伝える技術、結果を外へ発信する重要性を教わりました。堀井さんには解 析全般や物理のアドバイス、スライドのチェック他、多くの面で非常にお世話になりまし た。数々の相談や質問に親身になって対応してくれたことに、書き表せられないほど感謝 しています。菊地さんには何も分からなかった頃、解析について基礎からご指導頂きまし た。伊藤君、佐々木君には自主ゼミに始まり米組合に至るまで、同じ M2 の 3 人で様々な ことに協力し合ったことは研究の大きな助けとなりました。板垣君、岡本君、佐藤君、鈴 木君、吉田君、斉藤君、中野君、根岸君、平井君には、後輩ながら必死に研究に取り組む 姿に心を打たれ、励みになりました。ニュートリノセンターの皆様には、研究環境や研究 発表会などグループの枠を超えた協力を頂きました。堺井義秀さん、Karim Trabelsi san、 Pavel Krokovny san、宮林謙吉さん、岩渕真也さんら ϕ_3 グループの方々には会議等で、多 くの素晴らしいアドバイスを頂きました。Belle 実験に尽力された、Belle コラボレーショ ンや KEKB の方々には感謝の意を表します。最後に陰ながらいつも私を支えてくれた家族 と友人に、深く感謝いたします。

参考文献

- N. Cabbibo, "Unitary Symmetry and Leptonic Decays", *Phys.Rev.Lett.* 10, 531(1963).
- [2] M.Kobayashi and T Maskawa, "CP violation in the renormalizable theory of weak interaction," *Prog.Theor.Phys* 49, 652(1973).
- [3] Particle Data Group, C. Amsler, et al., Phys.Rev.Lett. B667, 1(2008). http://pdg.lbl.gov/.
- [4] L. Wolfenstein, *Phys.Rev.Lett.* **51**, 1945(1983).
- [5] M. Gronau and D. London, *Phys.Lett.* B 253 483(1991).
- [6] M. Gronau and D. Wyler, *Phys.Lett.* B 265 172(1991).
- [7] D. Atwood, I. Dunietz and A. Soni, *Phys.Rev.Lett.* 78, 3257(1997); D. Atwood, I. Dunietz and A. Soni, *Phys.Rev.D* 63, 036005(2001).
- [8] S. Kurokawa and E. Kikutani, "Overview of the KEKB accelerators," Nucl.Instrum.Meth A499, 1(2003).
- [9] Belle Collaboration, A. Abashian et al., "The Belle detector," Nucl.Instrum.Meth A479, 117(2003).
- [10] Belle Collaboration, G. Alimonti *et al.*, "The BELLE silicon vertex detector," *Nucl.Instrum.Meth* A453, 71(2000).
- [11] Y. Ushiroda, "BELLE silicon vertex detectors," Nucl.Instrum.Meth A551, 6(2003).
- [12] H. Hirano et al., "A high resolution cylindrical drift chamber for the KEK B-factory," Nucl.Instrum.Meth A455, 322(2000).
- [13] T. Iijima *et al.*, "Aerojel Cherenkov counter for the BELLE detector," *Nucl.Instrum.Meth* A**453**, 321(2000).
- [14] H. Kichimi et al., "The BELLE TOF system," Nucl.Instrum.Meth A453, 315(2000).
- [15] H. Ikeda *et al.*, "A detailed test of the CSI(Tl) calorimeter for BELLE with photon beams of energy between 20-MeV and 5.4GeV," *Nucl.Instrum.Meth* A441, 401(2000).

- [16] Belle Collaboration, A. Abashian *et al.*, "The K_L/μ detector subsystem for the Belle experiment at the KEK B-factory," *Nucl.Instrum.Meth* A**449**, 112(2000).
- [17] R. Akhmetshin *et al.*, "Survey of the properties of BGO crystals for the extreme forward calorimeter at BELLE," *Nucl.Instrum.Meth* A455, 324(2004).
- [18] Y. Ushiroda et al., "Development of the central trigger system for the BELLE detector at the KEK B-factory," Nucl.Instrum.Meth A438, 460(1999).
- [19] G. C. Fox and S. wolfram, *Phys.Rev.Lett.* **41**, 1581(1978).
- [20] Belle Collaboration, K. Abe *et al.*, *Phys.Rev.Lett.* 87, 101801(2001).
- [21] Belle Collaboration, K. Abe et al., Phys. Rev. Lett. B511, 151(2001).
- [22] Belle Collaboration, K. Abe et al., Phys. Rev. D. B73, 051106(2006).
- [23] Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag (2008).