Development of Liquid Scintillator for A Large Size Neutrino Detector

Master thesis
by
TAJIMA Osamu
Department of Physics, Tohoku University
Sendai 980-8578, Japan

Jan 25, 2000
Contents

1 Introduction 1
 1.1 Present Status of Neutrino Mass 1
 1.2 Neutrino Oscillation ... 5
 1.3 Solar Neutrino Problem .. 7
 1.4 KamLAND Experiment ... 10
 1.5 KamLAND Detector .. 12
 1.5.1 Liquid Scintillator & Buffer Oil 16
 1.5.2 Photomultiplier Tube(PMT) 18

2 Neutrinos and Anti-Neutrinos Detection at KamLAND and Their Background 21
 2.1 Electron-Anti-Neutrino Detection 22
 2.1.1 Delayed Coincidence Technique - Detection Process - 22
 2.1.2 Cross Section of $\bar{\nu}_e p \rightarrow ne^+$[28, 22] 23
 2.1.3 Event Rate[28, 22] ... 24
 2.2 Neutrino detection using Elastic Electron Scattering 25
 2.2.1 Recoil Electron -Detection Process - 25
 2.2.2 Cross Section .. 25
 2.3 Other Detection Methods via ^{12}C Interaction 27
 2.4 Background Estimation in KamLAND 28
 2.4.1 Background from Cosmic Ray Muons[7, 19] 28
 2.4.2 Background from Natural Radioactivity in the Scintillator[7] 29

3 KamLAND Physics and Required Features for the Detector 33
 3.1 Long Baseline Neutrino Oscillation Experiment Using Reactor Anti-Neutrino ... 35
 3.1.1 Anti-Neutrino from Reactor 36
 3.1.2 Oscillation Study using Anti-Neutrino from Reactor 37
 3.2 Solar Neutrino Detection and Oscillation Experiment 43
3.2.1 Solar Neutrino Observation at KamLAND

3.2.2 Oscillation Study using 7Be Solar Neutrino

3.3 Terrestrial Anti-Neutrino Detection

3.3.1 Terrestrial Anti-Neutrino

3.3.2 Oscillation Study using Terrestrial Anti-Neutrino

3.4 Supernova Detection

3.5 Anti-Neutrinos from the Sun and Past Supernovae

3.6 Required Features for the Detector

3.6.1 Necessity of High Energy Resolution

4 Measurement of the Light Attenuation-Length of the KamLAND Liquid Scintillator

4.1 Selection of the Components of the Liquid Scintillator

4.2 Apparatus

4.3 Result of measurement

4.4 Estimation of the Light Yield

4.5 Summary

5 Direct Light Yield Study of the KamLAND Liquid Scintillator

5.1 Motivation

5.2 Liquid Scintillator

5.3 Apparatus

5.3.1 Setup

5.3.2 PMT

5.4 Analysis method

5.5 Measurement results

5.5.1 Paraffin-Oil Dependence of Light Yield

5.5.2 PPO concentration dependence of Light Yield

5.5.3 PPO concentration dependence of Decay Time

5.6 Energy(dE/dX) Calibration

5.7 Discussion

5.8 Summary

6 Summary

A Neutrino Oscillation

A.1 Vacuum Oscillation

A.2 Neutrino Oscillation in the Matter(MSW Effect)
Chapter 1

Introduction

1.1 Present Status of Neutrino Mass

Discovery of Neutrino Oscillation

In 1998, $\nu_\mu \rightarrow \nu_\tau$ oscillation\(^1\) was reported by the Super-Kamiokande group[16, 21]. Neutrino oscillation is the phenomenon that neutrino flavor changes to another flavor with time propagation because the flavor eigenstates and mass eigenstates are no identical (Section 1.2). This phenomenon cannot be observed if neutrino masses are 0. Neutrino oscillation is characterized by two parameters, $\sin^2 2\theta$ and Δm^2, if neutrino flavors mixed between two generation. $\sin^2 2\theta$ is the intensity of the mixing between two flavors, and $\Delta m^2 = |m_{\nu_1}^2 - m_{\nu_2}^2|$ is the mass square difference between different flavor neutrinos. The result of Super-Kamiokande group is shown in Figure 1.1, Δm^2 is $\sim 3 \times 10^{-3} \text{eV}^2$ and $\sin^2 2\theta$ is about 1. This result denotes that neutrinos have small masses and their masses are different among three generations.

Neutrino Mass in the Standard Model \([25, 24]\)

The standard model, which is the theory of elementary particles and of their interactions, explains almost all of the experimental results at present. Neutrino masses are treated as 0 in this model. The helisity of the massive particle is able to inverse because the velocity of the massive particle is less than c (light velocity). So, there must be right-handed neutrino(ν_R) if neutrino masses are not 0. The right-handed particle doesn’t have SU(2)$_L$ interaction, that is the same for ν_R. Moreover, the hyper charge of ν_R is 0 from $Q=I_3+Y$ because the charge(Q) and the iso-spin(I_3) is 0, so that ν_R doesn’t have U(1)$_Y$ interaction. To sum up, ν_R is the sterile particle which cannot be detected, and neutrino masses are treated as 0 for simplicity in the standard model. Therefore, there is no theoretical derivation that neutrino masses have to be 0 and

\(^1\nu_\mu \rightarrow \nu_e$ oscillation was disfavored in [21].
Figure 1.1: The 68%, 90% and 99% confidence intervals of $\nu_\mu \rightarrow \nu_\tau$ oscillation obtained by Super-Kamiokande are shown for $\sin^2 2\theta$ and Δm^2 parameter space.

The existence of ν_R. For example, $L \sim g\bar{\nu}_L\nu_R\phi$ type interaction is permitted in the SU(2)$_L \times$U(1)$_Y$ gauge theory, here ϕ is the Higgs field and g is the coupling constant. It is the same reason particle, u-quark, d-quark, \cdots, have mass. The meaning ν_R exists and the meaning neutrino mass is not 0 is same. The strength of this interaction is proportional to the mass of the individual particle because it is mediated by the higgs particle. Therefore, it is very difficult to know which ν_R is exist or not when ν_R mass is very small. This imply that neutrinos are able to have very small mass in the standard model(Figure 1.2-(a)). But, it is impossible to explain why neutrino masses are very small compared with other lepton or quark within the limits of the standard model. In other words, there is a possibility that the discovery of the neutrino mass is the discovery of the phenomenon beyond the standard model.
Is Massive neutrino Dirac-Neutrino or Majorana-Neutrino?

Following to above lines, the existence of Dirac-neutrino is allowed in the standard model although there is a problem why neutrino masses are very small. The mechanism that this type neutrinos have masses are shown in Figure 1.2-(a).

On the other hand, there is some possibility that neutrinos are Majorana-neutrino because neutrinos do not have charge. Majorana-particle is the particle that there is no difference between particle and anti-particle. The existence of massive Majorana-neutrino means beyond standard model, the reason is written in follow lines.

It is assumed that Majorana-neutrino is only left-handed[24], this neutrino cannot interact with the normal higgs particle(iso-spin 1/2) in the standard model. So, there must be the another higgs particle whose iso-spin is 1(Figure 1.2-(b)) or the another charged particle whose iso-spin is 1(Figure 1.2-(c)) if neutrinos have masses. Here, iso-spin 1 charged particle violates the lepton flavor conservation and iso-spin 1 higgs particle does not exist in the standard model.

Moreover, assuming that Majorana-neutrino are left-handed and right-handed, sea-saw mechanism model[34, 23, 24, 36] explain that neutrinos has very small mass(Figure 1.2-(d)). In this model, the relation of the masses of left-hand neutrino(m_{ν_L}), right-hand neutrino(m_{ν_R}) and lepton(m_{l}) is;

$$m_{\nu_L} \cdot m_{\nu_R} = m_{l}^2$$

m_{ν_L} can be very small if m_{ν_R} is very big $\sim 10^{16}$GeV[36], this is beyond the standard model scale, although iso-spin 1 higgs etc. are not needed in this model.

As the mentioned above, the explanation why neutrinos have small masses is much more easy if neutrinos are Majorana-neutrinos than if neutrinos are Dirac-neutrinos. In either case, the discovery of lepton flavor violation or double beta decay or the exclusion them are needed to decide the type of neutrinos.

Upper Limits of Neutrino Mass

Currently, direct neutrino mass measurement only give upper limits as following;

$$m(\nu_e) < \sim 2.5$eV [13, 5]$$

$$m(\nu_\mu) < 170$keV [9]$$

$$m(\nu_\tau) < 18.2$MeV [17]$$

Recently, the cosmology also suggest upper limits for all neutrino flavors because neutrino as dark matter does not need[12].

$$m(\nu_j) \leq 0.9$eV [12]$$

$$\Sigma m(\nu_j) \leq 8$eV [14]$$
Figure 1.2: Mechanisms that neutrinos have masses are shown in. (a) denotes that Dirac-neutrinos coupled with higgs particle(ϕ^0) and have masses. There must be iso-spin 1 higgs particle(χ^0) or iso-spin 1 charged particle(h^-) because only left-handed Majorana-neutrinos have masses. Those interactions are shown in (b) and (c). In (d), it is shown that the interaction of see-saw mechanism [34, 23, 24, 36].

\[\Phi = \langle \phi^0, \phi \rangle : \text{higgs in the standard model} \]
\[\chi = \langle \chi^0, \chi \rangle : \text{iso-spin 1 higgs} \]
\[h^- : \text{iso-spin 1 charged particle} \]
\[\text{(lepton flavor violation)} \]

Next Subject of Neutrino Oscillation Experiment

Direct measurement of neutrino masses and cosmology only give the upper limits of neutrino masses. On the other hand, neutrino oscillation experiment give the mass square difference(Δm^2) and mixing angle($\sin^2 2\theta$). From this experiment, lower limits of neutrino masses are known. Moreover, assumed that $m_{\nu_2} \gg m_{\nu_1}$ in $\nu_1 \leftrightarrow \nu_2$ oscillation, m_{ν_2} can be measured. From above features, neutrino oscillation experiment is the best way to measure neutrino masses at the present time.

Last year, $\nu_\mu \leftrightarrow \nu_\tau$ oscillation was observed, however $\nu_e \leftrightarrow \nu_x$ oscillation($x = \mu$ or τ, $s \cdots$) have not been observed. And, the discovery of $\nu_e \leftrightarrow \nu_x$ oscillation is looked forward to in the world.

\[\text{here, } j = e, \mu, \tau. \]

Combine the limits, from direct measurement and from cosmology, mass of 3 neutrino flavor2 is less than 0.9eV.

2The number of neutrino flavor is 3 on the condition that neutrinos masses are less than 45GeV. This is the result from the measurement of the Z^0’s decay width at LEP[24]
Figure 1.3: Mass of leptons and quarks. For neutrino mass, direct measurements only give upper limits. Recently, the cosmology suggests the upper limit of the neutrino mass because neutrino as dark matter does not need[12].

1.2 Neutrino Oscillation

A neutrino flavor changes to another flavor with time propagation if neutrinos have masses. This phenomenon is called “Neutrino Oscillation”.

For massive neutrinos, the flavor eigenstates, ν_e, ν_μ, ν_τ, are not the same as the mass eigenstates, ν_1, ν_2, ν_3, and its relation is written by the mixing matrix which is the same matrix as the CKM matrix for quarks.

$$|\nu_\alpha\rangle = U_{\alpha j} |\nu_j\rangle \quad (\alpha = e, \mu, \tau; \ j = 1, 2, 3) \ (1.1)$$

From this relation, it is possible that one neutrino(ν_α) converts to another flavor(ν_β).
Time evolution of states obey the Shrödinger equation,
\[i \frac{d}{dt} |\nu_j\rangle = E_j |\nu_j\rangle \quad (1.2) \]
here \(E_j \) is the energy of \(\nu_j \), and the wave function can be written as
\[|\nu_j(t)\rangle = e^{-iE_j t} |\nu_j(0)\rangle. \quad (1.3) \]

For flavor eigenstates, using Eq.1.1, 1.2 and 1.3,
\[i \frac{d}{dt} |\nu_\alpha\rangle = U_{\alpha j} E_j U_{j\alpha}^\dagger |\nu_\alpha\rangle \quad (1.4) \]
\[|\nu_\alpha(t)\rangle = U_{\alpha j} e^{-iE_j t U_{j\alpha}^\dagger} |\nu_\alpha(0)\rangle. \quad (1.5) \]

If \(\nu_\alpha \) is produced at \(t = 0 \), the probability of detecting this neutrino at \(t = t \) is
\[P(\nu_\alpha \rightarrow \nu_\alpha) = |\langle \nu_\alpha(t)|\nu_\alpha(0)\rangle|^2 \quad (1.6) \]
\[= |\langle \nu_\alpha(t)|U_{\alpha j} e^{-iE_j t U_{j\alpha}^\dagger} |\nu_\alpha(0)\rangle|^2 \quad (1.7) \]

To simplify the problem, we consider only two flavors,
\[U = \begin{pmatrix} \cos \theta_V & \sin \theta_V \\ -\sin \theta_V & \cos \theta_V \end{pmatrix} \quad (1.8) \]
here \(\theta_V \) is the mixing angle in vacuum between \(\nu_e \) and \(\nu_x \). Therefore, the survival probability(\(P_{\nu_e \rightarrow \nu_e} \)) of \(\nu_e \) and oscillation probability(\(P_{\nu_e \rightarrow \nu_x} \)) are;
\[P_{\nu_e \rightarrow \nu_e}(l, E; \Delta m^2, \sin^2 2\theta) = 1 - \sin^2 2\theta V \sin^2 \left(\frac{\Delta m^2 l}{4E} \right) \quad (1.9) \]
\[= 1 - \sin^2 2\theta V \sin^2 \left(\frac{1.27 \Delta m^2 [eV^2] l/[m]}{4E [MeV]} \right) \quad (1.10) \]
\[P_{\nu_e \rightarrow \nu_x}(l, E; \Delta m^2, \sin^2 2\theta) = 1 - P_{\nu_e \rightarrow \nu_e} \quad (1.11) \]
\[= \sin^2 2\theta V \sin^2 \left(\frac{1.27 \Delta m^2 [eV^2] l/[m]}{4E [MeV]} \right) \quad (1.12) \]

here \(\Delta m^2 \) is the mass square difference between \(\nu_e \) and \(\nu_x \) (\(\Delta m^2 = |m_2^2 - m_1^2| \)), \(l \) is the propagation length in the time interval of \(t \) For \(\bar{\nu}_e \rightarrow \bar{\nu}_x \) oscillation, these can be written similar expression.

From above equations, it is clear that \(P_{\nu_e \rightarrow \nu_e} < 1 \), so the number of observed \(\nu_e(\bar{\nu}_e) \) events are less than that of generated \(\nu_e(\bar{\nu}_e) \) events if \(\nu_e(\bar{\nu}_e) \) and \(\nu_x(\bar{\nu}_x) \) have finite different masses and there is a non-zero mixing angle between them.
1.3 Solar Neutrino Problem

First phenomenon which have implied $\nu_e \leftrightarrow \nu_x$ oscillation is “solar neutrino problem”. And this problem have not been solved for about 30 years.

The first measurement of the solar neutrino has been performed by Davis and his associates using a chlorine(37Cl) radiochemical detector starting in 1968. However, the observed rate(2.6 ± 0.2 SNU) is much less than the predicted rate(7.9 ± 2.6 SNU) based on the Standard Solar Model(SSM)[1]. Here, SNU is the solar neutrino unit, $[10^{-36}\text{neutrino capture/atom/sec}]$. The value is the product of solar neutrino flux($\text{cm}^{-2}\text{s}^{-1}$) and cross section of the atom(cm^2). This is the “solar neutrino problem”. Is the solar neutrino problem caused by unknown properties of neutrinos or by a lack of understanding of the interior of the Sun? In other words, is this a case of new physics or faulty astrophysics?

Standard Solar Models are the end product of a sequence of models. The calculation of a model begins with the description of a main sequence star that has a homogeneous composition. Hydrogen burns in the stellar core, supplying both the radiated luminosity and the thermal pressure that supports the star against the force of gravity. Successive models are calculated by allowing for composition changes caused by nuclear reactions, as well as the mild evolution of other tribution inside the star. A satisfactory solar model is a solution of the evolutionary equations that satisfies boundary conditions in both space and time. The Standard Solar Model gives a satisfactory account of what is known about the Sun from photons.

Helioseismology[1], like terrestrial seismology, provides information about the interior of the body under study by using observations of slight motions on the surface. The comparison between observed and calculated helioseismological sound speeds is precise($\sim 0.1\%RMS$)[20]. Figure 1.4 shows the fractional differences between the most accurate available sound speeds measured by helioseismology and sound speeds calculated with our best solar model(with no free parameters). The horizontal line corresponds to the hypothetical case in which the model predictions exactly match the observed values. The RMS fractional difference between the calculated and the measured sound speeds is 1.1×10^{-3} for the entire region over which the sound speeds are measured, $0.05R_\odot < R < 0.95R_\odot$. In the solar core, $0.05R_\odot < R < 0.25R_\odot$ (in which about 95% of the solar energy and neutrino flux is produced in a Standard Solar Model), the RMS fractional difference between measured and calculated sound speeds is 0.7×10^{-3}. Consider with this result, the most popular explanation of a lack of solar neutrino is the neutrino oscillation.

The inconsistency between theoretical calculation and observation has recently
been confirmed by an independent technique using the Japanese detector of neutrino-electron scattering, Kamiokande (II, III) and Super-Kamiokande. The flux ratio to the SSM (R) at Kamiokande is $R = 0.54 \pm 0.07$, and $R = 0.475 \pm 0.015$ at Super-Kamiokande. In addition, the results of 71Ga experiments at Gran Sasso (it $R = 0.52 \pm 0.07$) and at Baksan ($R = 0.59 \pm 0.06$) is inconsistent to the calculation based on the SSM, the observed flux is much less than calculated value[35].

Above measurement results give four neutrino oscillation solutions. **VAC, LMA, SMA, LOW** (Figure1.5). **VAC** means the vacuum oscillation and is sometimes called as just-so. In that case, the oscillation length is comparable to the Sun-Earth distance. Assuming the MSW mechanism (chapterA.2), three possibilities are refered to as large mixing angle solution (LMA), small mixing angle solution (SMA), and low Δm^2 solution (LOW).
Figure 1.5: Four solutions, LMA, SMA, LOW and VAC, of the solar neutrino problem and the sensitivity of KamLAND experiment to them from the reactor neutrino study and the ^7Be solar neutrino studies. The LMA(Large Mixing Angle) solution is covered by the reactor neutrino study, the LOW(Low Δm^2) solution is covered by the day-night asymmetry of ^7Be neutrino flux, and VAC(Vacuum) solution is covered by the seasonal variation of ^7Be neutrino flux. Moreover, the SMA(Small Mixing Angle) solution can be recognized by essentially null flux of ^7Be neutrino.
1.4 KamLAND Experiment

KamLAND experiment is the $\nu_e \rightarrow \nu_x$ oscillation experiment, aiming at solving the solar neutrino problem. As described in Section 1.2, neutrino oscillation probability can be written as,

$$P(\nu_e \rightarrow \nu_x) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 [eV^2] L [m]}{E [MeV]} \right)$$ (1.13)

here, L is the distance from a neutrino source to the detector, and E is the neutrino energy. From the formula, low energy neutrino detection and long baseline experiment give good sensitivity to low $\Delta m^2 \sim \frac{E}{L}$. KamLAND is relevant to the situation. It detects low energy anti-neutrinos ($E:1.8MeV\sim10MeV$) coming from long distant reactors ($L \geq 150km$). It also aims at observing low energy solar neutrino, 7Be ($E=861keV$) etc.

Figure1.6 shows the $E/L[MeV/km]$ dependence of the survival probability ($P(\nu_e \rightarrow \nu_x)$), here $\Delta m^2 = 2 \times 10^{-5}[eV^2]$ and $\sin^2 2\theta=0.7$ (LMA solution) are assumed. “KamLAND Reactor Neutrino” shows the sensitive region of the KamLAND reactor anti-neutrino study. On the other hand, in Figure1.5, the right side of the line “reactor neutrino” is the sensitive region by reactor anti-neutrino at 90% CL, $\Delta m^2 \geq 6 \times 10^{-6}[eV^2], \sin^2 2\theta \geq 0.7$, based on 3k-ton-year data with 78% power. Here, it is assumed that there is no background. KamLAND is the most sensitive detector about Δm^2 in the world, and can examine the LMA solution directly for the first time in the world.

By observing solar neutrinos, especially 7Be, KamLAND can explore the LOW solution with a possible day-night asymmetry, the VAC solution with a seasonal variation and the SMA solution can be recognized by essentially null flux of 7Be neutrinos. Moreover, 7Be neutrino flux and to compare other experiments, SNO, results will search the SMA solution.

The other various neutrinos, terrestrial anti-neutrino, supernova, relic anti-neutrino from the past supernova search for are also the subject of KamLAND experiment. And new knowledge to the geo physics, cosmology and so on will be brought by KamLAND.

KamLAND experiment will solve the solar neutrino problem and new physics is aiming at opening.
Figure 1.6: The E/L[MeV/km] dependence of the survival probability($P(\nu_x \rightarrow \nu_x)$), here it is assumed that $\Delta m^2 = 2 \times 10^{-5}$[eV2] and $\sin^2 2\theta=0.7$ which are LMA solution values. “KamLAND Reactor Neutrino” shows the sensitive region of the KamLAND reactor anti-neutrino study.
1.5 KamLAND Detector

The KamLAND detector is sited in the old Kamiokande cavity under the summit of Mt. Ikenoyama. The site is \(\sim 50 \) km south of Toyama city. At this location the rock overburden in any direction is more than 1,000 meters. With an average rock density of 2.7 g/cm\(^3\) the minimum surface energy required for a muon to reach the detector is 1.3 TeV. The total muon rate in KamLAND is estimated 0.2\(\sim 0.4 \) Hz.

Figure 1.7 shows the KamLAND detector. The primary detector target consists of 1,200 m\(^3\) of ultra-pure liquid scintillator located at the center of the detector, and this is put in the transparent sevenfold layer film, EVOH\(^3\) and fivefold nylon and EVOH, sphere(balloon) whose diameter is 13m. This liquid scintillator consists of normal paraffin oil N12\(^4\)(80%), pseudocumene(20%) and PPO(1.5 g/l), optimized to obtain good light output and transparency(Chapter 4, 5). Surrounding the scintillator vessel(balloon) is a spherical shielding shell with 2.5 m thick of ultra-pure paraffin oil buffer and acrylic resin sheet(thickness 3mm) against \(\gamma \)-rays which comes from the PMT-glass and so on. The density of this buffer oil is as same as the density of the scintillator(difference 0\(\sim 0.3 \)% so that the safety of the balloon is secured.

The scintillator is viewed by an array of photomultipier tubes (17” and 20” PMT) supported on a 18m diameter stainless steel spherical vessel. The 17” PMT is developed for the KamLAND experiment, and 20” PMT has been used for the old KAMIOKANDE. 17” PMT improved from the 20” PMT used at Super-Kamiokande. By limiting the photon acceptance area to the central 17 inches and replacing original Venetian-blind dinode to a line-focus type(Figure 1.8), so that the transit time spread(TTS) and peak-to-valley(P/V ratio) are significantly improved. Details of 17” PMT are described in 1.5.2. The number of 17” PMT is 1,295 and that of 20” PMT is 590, resulting the coverage to be the about 30%. TTS of the 17” PMT is \(\sim 3 \) nsec(FWHM) which is much better than that of the Super-Kamiokande 20” PMT, \(\sim 5.5 \) nsec(FWHM) and the old KAMIOKANDE 20” PMT, \(\sim 7 \) nsec(FWHM). The vertex reconstruction will be carried out using timing information of only 17” PMTs, and the energy measurement will be done using charge information of both the 17” PMTs and the 20” PMTs.

The stainless sphere is surrounded with the ultra-pure water. This water absorbs much of the radioactivity coming from rock walls and moderates fast neutrons produced in the rock. Moreover, this is the cosmic-ray veto counter, detecting Cherenkov photons with old KAMIOKANDE 20” PMTs.

We estimate that the background rate of the anti-neutrino event is about 0.07

\(^3\)This is the effective material to suppress Rn permeation.
\(^4\)This is made by Cosmo Petroleum Company, Japan.
events/day[31]. On the other hand, the event rate of the anti-neutrino from the nuclear reactor is estimated about 2 events/day.

The detected photon is converted to the electric analog signal by the PMT. Using the KamLAND electronics\(^5\), this analog signal is converted to digital information, detected time, charge and waveform of each PMT. The event trigger will created using some information of PMTs, the number of hit, charge, time and so on. When trigger signal is created, these information are edited to a lump of data for recording on magnetic tape mediated the data acquisition system, kinoko[29]. 'kinoko' stands for ”Kinoko Is Network distributed Object oriented KamLAND Online system”, and there are many fresh features, network distributed parallel processing, object oriented design and so on. Finally, the data will be recorded on the magnetic tape using the storage system\(^6\) and will be analyzed using it. Figure 1.9 shows signal and data stream in KamLAND.

\(^5\)This electronics is developed by KamLAND LBL-electronics group.
\(^6\)Data storage system is now developing based on object oriented design.
KamLAND detector

PMT coverage 36%
17"PMT - 1,295
20"PMT - 590

1,000t liquid scintillator
1,300m3

3,000m3 Buffer Tank
(Paraffin Oil)
1,800m3

Scintillator vessel
r = 6.5m
φ = 13m

Water Cherenkov
Anti-Counter
3,200m3
20"PMT - 255

Figure 1.7: KamLAND detector
Figure 1.8: Mechanical differences between 17” PMT and 20” PMT are shown in this figure. The diameter of the photon acceptance area are 17” and 20”, dinode are line-focus type or Venetian-blind type, respectively.

Figure 1.9: Signal and data stream in KamLAND. PMT signals are converted to digital information using electronics, and digital information are edited to the event data by kinoko. Finally, the data is recorded on the magnetic tape using the storage system.
1.5.1 Liquid Scintillator & Buffer Oil

The amount of the liquid scintillator for KamLAND is about 1,200m3. Light attenuation length of commercially available liquid scintillators is not long enough for the large KamLAND, and these scintillators costs too much.

Following features are required to make the KamLAND experiment feasible.

1. **Light output and the transparency need to be good.**

The radius of the scintillator vessel is very long (6.5m), and the good transparency and the high light output (~ 50% Anthracene7) are necessary.

2. **U, Th and K contamination should be low**

 Internal background needs to be very low for super low energy experiment8.

3. **PSD9 efficiency among γ-ray and α, neutron should be high**

 PSD is very effective to suppress backgrounds. Fast neutrons and α from Rn can will be suppressed using this method.

4. **Quenching factor for α needs to be high.**

 Light emission of scintillators in response to α particle irradiation is strongly suppressed in comparison with electron irradiation of the same energy. It is very effective to suppress the background events from α particles in the decay chain of the 238U, 232Th and 222Rn.

5. **H/C ratio of the scintillator material is high.**

 Anti-neutrino is detected via the ν_e-p interaction, and its event rate depends on the number of free proton in the scintillator.

6. **Nonpoisonous and high flash point for safety**

 Resulted from the R&D (Chapter 4, 5 and [31, 27, 26, 32]) considering above demands, the KamLAND liquid scintillator is paraffin oil(C$_n$H$_{2n+2}$) base,

 \[
 \text{N12(80\%) + P.C.(20\%) + PPO(1.5g/l),}
 \]

 here N1210 is the paraffin oil(C$_{12}$H$_{26}$), and P.C., pseudocumen(1,2,4-Trimethyl Benzene) is one of the most popular solvents, and PPO(2,5-diphenyloxazole) is one of the most popular solute. Figure 1.10, 1.11, 1.12 show the molecular formula of each components.

7100% Anthracene = 17,000 p.e./MeV

8Ex. the recoil electron energy of the 7Be solar neutrino is less than 670keV

9Pulse Shape Discrimination

10Normal Paraffin N12D, Cosmo Petroleum Company, Japan
transparency of it is very good (Chapter 4 and [27]) and chemically stable. H/C-ratio of paraffin is large, \(\sim 2.17 \).

Buffer oil is a mixture of paraffin oils,

\[
N12(60\%) + P250(40\%)
\]

here P250\(^{11}\) is iso-paraffin oil \((C_nH_{2n+2}, n\sim 14)\) which has the branches of CH\(_3\). Density difference between the liquid scintillator and the buffer oil will be controlled at 0\(\sim 0.3\%\).

![Molecular formula of N12.](image)

![Molecular formula of Pseudocumene(P.C.).](image)

![Molecular formula of PPO.](image)

\(^{11}\)Paraol 250, Showa Shell, Japan
1.5.2 Photomultiplier Tube (PMT)

KamLAND will detect low energy neutrinos and anti-neutrinos done to a few hundred keV. For better photon collection efficiency and vertex resolution, large photo-sensitive area and good timing resolution are necessary. We have developed new 17”PMT improved from the 20”PMT used at Super-Kamiokande. By limiting the photon acceptance area to the central 17 inches and replacing original Venetian-blind dinode to a line-focus type, TTS (transit time spread) is significantly improved from $\sim 5.5 \text{ nsec (FWHM)}$ to $\sim 3 \text{ nsec (FWHM)}$, and P/V ratio (peak-to-valley) is improved from ~ 1.5 to ~ 3.

In Figure 1.14, qualities of 17”PMT and 20”PMT are compared. The shaded histogram denotes 17”PMT, and plain histogram denotes 20”PMT used at Super-Kamiokande. SKb (Sensitivity of Kathord to blue) of 17”PMT is a little better than 20”PMT. The supply voltage at 10^7 gain is a few hundred Volts higher. Dark current, dark pulse rate, TTS (Transit Time Spread) and P/V ratio get better. Especially, TTS and P/V ratio are much better than the old ones.

Magnetic field dependences almost negligible for the experiment. From the measurement, pulse height at the magnetic field below 50mGauss is less than 20%. A set of compensating coils will be installed in the cavern to cancel the magnetic field of the earth ($\sim 500 \text{ mGauss}$) to a level well below the limit of 50mGauss necessary for a proper operation of the photomultipliers.

Quantum efficiency (Q.E.) of 17”PMT is shown in Figure 1.13. Wavelength dependence of Q.E. is decided by a material of photo-cathode, bialkali, although an individual difference exists because of the thickness of it. Therefore, Q.E. of 20”PMT is almost same.

![Quantum Efficiency of PMT](image)

Figure 1.13: Quantum efficiency of PMT
Figure 1.14: This figure shows some qualities of 17"PMT (shaded histogram) and 20"PMT. SKb (sensitivity of kathord to blue) of 17"PMT is a little better than that of 20"PMT. The supply voltage at 10^7 gain is a few hundred Volts higher. Dark current, dark pulse rate get little better. TTS and P/V ratio are much better than the old ones. Almost all qualities of 17"PMT are better than 20"PMT’s without supply voltage.
Chapter 2

Neutrinos and Anti-Neutrinos
Detection at KamLAND and Their Background

At first section, a delayed coincidence technique is described as an electron-anti-neutrino($\bar{\nu}_e$) detection method, and which is essential for the long baseline neutrino oscillation experiment using reactor anti-neutrinos. This technique provides not only a knowledge of $\bar{\nu}_e$ energy but also very strong background suppression. The $\bar{\nu}_e$ event rate from Japanese nuclear reactors are estimated to be about 2 events/day. And the background rate for the delayed coincidence signal is estimated as 0.07 event/day assuming radioactive impurities of U, Th $\leq 10^{-16}$g/g, K $\leq 10^{-14}$g/g and Rn $\leq 1 \mu$Bq/cm3 at which we are aiming.

Next, we describe a neutrino detection (especially solar neutrino) with a neutrino-electron elastic scattering. Observation of 7Be solar neutrino plays important role to explore the SMA, LOW and VAC solutions. Since the recoil electron has kinematically distributing spectrum, electron energy can not be translated to neutrino energy one by one. However, in case of monochromatic neutrino detection, 862keV 7Be neutrino, as our subject, produces a sharp edge in its spectrum. The 7Be solar neutrino can be observed quantitatively by recognizing this edge.

Moreover, we mention interactions between neutrinos and 12C. These interactions are very important in a supernovae neutrinos detection.
2.1 Electron-Anti-Neutrino Detection

2.1.1 Delayed Coincidence Technique - Detection Process -

Electron-anti-neutrinos, \(\bar{\nu}_e \), create delayed coincidence signals in KamLAND. In the inverse \(\beta \)-decay of \(\bar{\nu}_e \) reaction a positron and a neutron are emitted;

\[
\bar{\nu}_e p \rightarrow n e^+ \quad (2.1)
\]

\[
E_{\text{threshold}} = \Delta m_{np} + m_e = 1.804 \text{MeV} \quad (2.2)
\]

Here, \(\Delta m_{np} (=1.293 \text{MeV}) \) is the mass difference of a proton and a neutron, and \(m_e (=0.511 \text{MeV}) \) is the electron mass. This positron deposits its energy by ionization and then annihilates \((e^+ e^- \rightarrow 2\gamma (511 \text{keV})) \), here intensity of the scintillation by this prompt signal \(E_{\text{visible}} \) reflects incident \(\bar{\nu}_e \) energy \(E_{\bar{\nu}_e} \);

\[
E_{\text{visible}} = E_{\bar{\nu}_e} - \Delta m_{np} + m_e \quad (2.3)
\]

\[
= E_{\bar{\nu}_e} - 0.782 \text{MeV} \quad (2.4)
\]

On the other hand, the neutron is thermalized in the scintillator and captured by a proton in environment, and produces deutron associated \(2.2 \text{MeV} \) \(\gamma \)-ray;

\[
np \rightarrow d^* \rightarrow d \gamma (2.2 \text{MeV}) \quad (2.5)
\]

Mean time from inverse \(\beta \)-decay to neutron capture is \(\sim 175 \mu \text{sec} \),

![Figure 2.1: \(\bar{\nu}_e \) - p interaction(inverse \(\beta \)-decay) and neutron capture process.](image_url)
2.1.2 Cross Section of $\bar{\nu}_e p \to n e^+$[28, 22]

The lowest-order cross section for the $\bar{\nu}_e p \to e^+ n$ interaction is expressed by a following formula.

$$\sigma_0(E_\nu) = \frac{2\pi^2}{m_e^2 f \tau_n} P_e E_e$$ \hspace{1cm} (2.6)
$$= \frac{2\pi^2}{m_e^2 f \tau_n} (E_\nu - \Delta m_{np}) \sqrt{(E_\nu - \Delta m_{np})^2 - m_e^2}$$ \hspace{1cm} (2.7)
$$= 9.55 \times 10^{-44} (E_\nu - 1.293) \sqrt{(E_\nu - 1.293)^2 - 0.511^2} \ \text{[cm}^2]\) \hspace{1cm} (2.8)

$$f = 1.6857 : \text{usual statistical function}$$
$$\tau_n = 886.7 \pm 1.9[\text{sec}] : \text{neutron life time}$$
$$\Delta m_{np} = m_n - m_p = 1.293[\text{MeV}]$$

Here, it is assumed that a neutron is infinitely heavy, and the unit of a E_ν is [MeV]. The value, $f \tau_n$, is obtained from a neutron β decay.

Further calculation has been provided by Vogel with several corrections to the above formula, δ_{WM} for the weak magnetism interference, δ_{rec} for the recoil, δ_{rad} for the radiative correction. The weak magnetism arising from difference in anomalous magnetic moments of neutrons and protons, $\mu = \mu_n - \mu_p = 4.71\mu_n$(nuclear magneton).

The radiative corrections includes a contribution from internal bremsstrahlung, and its order is α.

$$\sigma(E_\nu) = \sigma_0(E_\nu) (1 + \delta_{rec} + \delta_{WM} + \delta_{rad})$$ \hspace{1cm} (2.9)

From higher order calculation[28, 22],

$$\delta_{WM} = \frac{-2\mu(g_A/g_V) E_\nu + \beta \sqrt{(E_\nu - \Delta m_{np})^2 - m_e^2}}{1 + 3(g_A/g_V)^2}$$
$$\delta_{rad} = \frac{1}{1 + (g_A/g_V)^2} \times \frac{1}{m_p} \frac{1}{(E_\nu - \Delta m_{np} - m_e)^{-0.3}}$$
$$\delta_{rec} = \frac{1}{1 + (g_A/g_V)^2}$$

$$= \frac{1}{m_p} \frac{1}{(E_\nu - \Delta m_{np} - m_e)^{-0.3}}$$

Here, $g_A/g_V = 1.2670 \pm 0.0035$ is the ratio of axial-vector and vector coupling constants, and $\beta = \sqrt{1 - m_e^2/(E_\nu - \Delta m_{np})^2}$.
2.1.3 Event Rate\cite{28, 22}

The event rate using lowest-order cross section is

\[Y_0 (E_\bar{\nu}) = N_p \sigma_0 (E_\bar{\nu}) n (E_\bar{\nu}) \] (2.10)

where, \(N_p \) is number of proton in a detector and \(n (E_\bar{\nu}) \) is a \(\bar{\nu}_e \)-flux.

More correct estimation is using \(\sigma (E_\bar{\nu}) \) and another correction(\(\delta_{\text{spec}} \)). When the recoil of neutron cannot be negligible, i.e. the energy of \(\bar{\nu}_e \) is high, measured antineutrino energy \(E_\bar{\nu}(= E_{e^+} + \Delta m_{np}) \) is smaller than the true energy \(E_{\bar{\nu}}^{(\text{real})} \). That is to say, the real energy of anti-neutrino is bigger than detected energy which is calculated using visible energy. From the energy and momentum conservation, the relation\cite{28, 22} of \(E_\bar{\nu} \) and \(E_{\bar{\nu}}^{(\text{real})} \) is

\[E_\bar{\nu} = E_{\bar{\nu}}^{(\text{real})} - \frac{1}{m_p} \left[E_{e^+} (E_{e^+} + \Delta m_{np}) + \Delta m_{np}^2 - m_e^2 \right] \] (2.11)

and \(\delta_{\text{spec}} \) is

\[\delta_{\text{spec}} (E_\bar{\nu}) \equiv \frac{n (E_{\bar{\nu}}^{(\text{real})}) - n (E_\bar{\nu})}{n (E_{\bar{\nu}}^{(\text{real})})} < 0 \] (2.12)

To the end, corrected event rate is

\[Y (E_\bar{\nu}) = N_p \sigma (E_\bar{\nu}) n (E_\bar{\nu}) (1 + \delta_{\text{spec}}) \] (2.13)

\[= Y_0 (E_\bar{\nu}) (1 + \delta_{\text{rec}} + \delta_{\text{WM}} + \delta_{\text{rad}}) (1 + \delta_{\text{spec}}) \] (2.14)

\[= Y_0 (E_\bar{\nu}) (1 + \delta_{\text{rec}} + \delta_{\text{WM}} + \delta_{\text{rad}} + \delta_{\text{spec}}) \] (2.15)
2.2 Neutrino detection using Elastic Electron Scattering

2.2.1 Recoil Electron -Detection Process -

In the liquid scintillator, the electron which is scattered by a neutrino can be detected via the scintillation light. The electron recoil energy T_e is

$$
T_e = \frac{2E^2 \cos^2 \theta}{\left(1 + \frac{E_e}{m_e}\right)^2 - \left(\frac{E_e}{m_e}\right)^2 \cos^2 \theta}
$$

(2.16)

$$
\leq \frac{E_\nu}{1 + m_e/2E_\nu} \equiv T_{max}
$$

(2.17)

where, T_e and θ are electron kinetic energy and angle between incident neutrino and recoil electron, respectively. Although the recoil electron has kinematically distributing energy, monochromatic energy would give rise to a recoil electron spectrum characterized by a sharp edge at T_{max} (Figure 2.3).

![Figure 2.2: $\nu - e$ interaction.](image)

2.2.2 Cross Section

Cross section in a laboratory system for $\nu_{\mu,\tau} e \rightarrow \nu_{\mu,\tau} e$ or $\nu_{\mu,\tau} e \rightarrow \nu_{\mu,\tau} e$ elastic scattering is

$$
\frac{d\sigma_{\nu_{\mu,\tau},\nu_{\mu,\tau}}}{dy} = \frac{G_F^2 m_e E_\nu}{2\pi} \times \left[(g_\nu \pm g_A)^2 + (g_\nu \mp g_A)^2 (1 - y)^2 - \left(g_\nu^2 - g_A^2 \right)^2 \frac{ym_e}{E_\nu}\right]
$$

$$
g_\nu = -\frac{1}{2} + 2\sin^2 \theta_W, \quad g_A = -\frac{1}{2}
$$

here the upper(lower) sign refers to $\nu_{\mu,\tau}$ ($\nu_{\mu,\tau}$), and $y \equiv T_e/E_\nu$ (which) runs from 0 to $(1 + m_e/2E_\nu)^{-1}$ is the ratio of the kinetic energy of the recoil electron to the incident...
\[\sigma_{\nu_{\mu}, \nu_{\mu}} = \frac{G_F^2 m_e E_{\nu}}{2\pi} \left[(g_V \pm g_A)^2 + \frac{1}{3} (g_V \mp g_A)^2 \right]. \] (2.18)

The cross section for $\nu_e e$ and $\bar{\nu}_e e$ be obtained by replacing $g_{V,A}$ by $g_{V,A} + 1$ in above equations, here 1 coming from a charged-current contribution.

\[\sigma_{\nu_e, \nu_e} = \frac{G_F^2 m_e E_{\nu}}{2\pi} \left[((g_V + 1) \pm (g_A + 1))^2 + \frac{1}{3} ((g_V + 1) \mp (g_A + 1))^2 \right] \] (2.19)

1The most accurate leptonic measurements of $\sin^2 \theta_W$ are from the ratio $R \equiv \sigma_{\nu_{\mu}, \nu_{\mu}} / \sigma_{\nu_{\mu}, \nu_{\mu}}$ in which many of the systematic uncertainties cancel.
2.3 Other Detection Methods via 12C Interaction

There are three relevant neutrino reactions on carbon, and they are particularly important for a supernova detection at KamLAND.

for ν_e:

\[
\nu_e^{12}C \rightarrow ^{12}Ne^- \quad (E_{Th.} = 17.3MeV) \quad (2.20)
\]

\[
^{12}N \rightarrow ^{12}Ce^+\nu_e \quad (T_{1/2} = 11.0msec) \quad (2.21)
\]

for $\bar{\nu}_e$:

\[
\bar{\nu}_e^{12}C \rightarrow ^{12}Be^+ \quad (E_{Th.} = 14.4MeV) \quad (2.22)
\]

\[
^{12}B \rightarrow ^{12}Ce^-\bar{\nu}_e \quad (T_{1/2} = 20.4msec) \quad (2.23)
\]

They can be recognized by observing both the corresponding e^\pm and the delayed β^\pm decay with half-lives of 11.0 and 20.4msec, respectively. Thus, signals from these reactions will be essentially background free.

The neutral current reaction;

\[
\nu_{e,\mu,\tau}(e_{e,\mu,\tau})^{12}C \rightarrow ^{12}C^{\ast}\nu_{e,\mu,\tau}(e_{e,\mu,\tau}) \quad (E_{Th.} = 15.11MeV) \quad (2.24)
\]

\[
^{12}C^{\ast} \rightarrow ^{12}C(15.11MeV) \quad (2.25)
\]

All neutrino flavors can excite 12C; the cross section depends only on the neutrino energy.
2.4 Background Estimation in KamLAND

2.4.1 Background from Cosmic Ray Muons[7, 19]

Cosmic ray muon interacts with nuclei, muon capture and muon spallation, and many radioactive nuclei, pion and neutron are produced. Secondary interactions or decays of these new products are background sources which cannot be removed in preparation. The muon flux at the KamLAND site has been measured by the old Kamiokande[10], and the muon flux was $3.5 \times 10^{-8} \text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$. Assuming a $\cos^2 \theta$ zenith angle distribution, this flux is translated to a muon rate of 0.44Hz in the central detector and 1.45Hz in the veto detector.

To remove background derived from cosmic ray muons, the veto condition is assumed, fiducial cut along with muon track space (≤ 1 m) for 3sec when muon go through the detector. Under this veto condition, background events are limited following in two ways[7];

- Radioactive nuclei with life times of order 100msec or greater which are produced by muon spallation.
- Fast neutron which is generated in the rock outside of the KamLAND detector. This fast neutron can pass undetected through the veto counter and generate a background event in the central detector.

Table 2.1 shows major background from muon spallation in the detector. For single event($\nu e \rightarrow \nu e$), 11C and 7Be are serious background source which produced by muon spallation. These two isotopes cannot be removed by above veto-condition because of their long life-times, mean life-times are 1.76×10^3 for 11C and 6.64×10^6 for 7Be, respectively. Decay modes are 11C $\rightarrow \beta^+(1.98\text{MeV})$ and 7Be$^-$ $\rightarrow ^7\text{Li} \gamma(478\text{keV})$. Thier production rates are estimated about 400/kt/day for 11C and about 300/kt/day for 7Be, respectively.

The 11C minimum visible decay energy of 1.02MeV is above the endpoint of the 7Be neutrino scattering spectrum(665keV), but it can still be a limiting background for the 7Be neutrino experiment due to the limited energy resolution of the detector.

The 7Be visible decay energy is a line spectrum at 478keV, broadened by the energy resolution of the detector. This is a potentially insidious background for the solar neutrino experiment.

On the other hand, we estimate that 12,400 neutrons per day are produced in the rock shell. For solar neutrino detection, background form this fast neutron is cut almost all due to a fiducial cut(fiducial volume is 300ton). Additionally, Number of fast neutrons whose deposited energy are above 3MeV in the detector is estimated 3
Background	τ[sec.]	Energy[MeV]	Production Method	Rate[day⁻¹]
11C decay | $1.76\times10³$ | 1.98 | 12C(γ,n)11C | 240
10C decay | 27.8 | 3.65 | 12C(γ,2n)10C | 43
7Be decay | $6.64\times10⁶$ | 0.478 | 12C(γ, nα)7Be | 17
11Be decay | 19.9 | 11.5 | 12C(π^-,p)11Be | 0.5
8Li decay | 1.21 | 13.0 | 12C(π^-, α)8Li | 7.7

Table 2.1: Major background from muon spallation interactions[30].

Events/day. This is negligible compare to background rate from the natural radioactivity. For a delayed confidence event, background rate is estimated 0.07 events/day on the following trigger conditions;

- E_{prompt} ≥ 1MeV
- 1.8MeV ≤ $E_{delayed}$ ≤ 2.7MeV
- $|V(x, y, z)_{prompt} - V(x, y, z)_{delayed}| ≤ 1$m
- 10μsec ≤ $T_{delayed} - T_{prompt}$ ≤ 500μsec

Here, $V(x, y, z)$ denotes Vertex of each event. This is far less than reactor $\bar{\nu}_e$ event rate, 2 events/day.

2.4.2 Background from Natural Radioactivity in the Scintillator[7]

238U, 232Th, 40K, 222Rn and 14C are background sources which dissolved in the scintillator. The U/Th concentration in the scintillator will be less than 10^{-16}g/g, which corresponds to 1.2×10^{-5}Bq/kt for U and 4.1×10^{-4}Bq/kt for Th, respectively. The content of K will be less than 10^{-14}g/g(3.1×10^{-4}Bq/kt), and the ratio 14C/12C = 10^{-18}(163Bq/kt). And noble gas Rn penetrates into the scintillator and decay there, its rate will be less than 1μBq/m³(1.3×10^{-3}Bq/kt). Additionally, 7Be and 11C which are produced by cosmic-ray muons are also background sources, and their production rate are \sim400/kt/day and \sim3000/kt/day, respectively.

Since it is not possible to measure the background without the presence of the neutrino signal, alternative methods have to be envisaged to accurately infer the background rate. The most crucial U/Th and Rn contribution would be determined through Bi-Po coincidences. The decay tables of 238U and 232Th are shown in Appendix B. In case of U/Rn, 214Bi β-decay is quickly followed by the 214Po α-decay($T_{1/2} = 164$μsec). The 212Bi-212Po pair in the Th decay series has a correlation time of 0.30μsec. A tagged
background sample would also give the measured spectral shape of these components. Assuming to the tagging efficiency is 95%, β and γ of 214Bi and the corresponding α of 214Po are removed on the event by event basis for U. Similarly, the pair of decays β and γ of 212Bi and α of 212Po are also removed for Th.

Moreover, since the correlated Bi-Po rates will be accurately known, decays are necessarily in equilibrium with them can be accurately subtracted (so-called “statistical subtraction”). α of 222Rn and 218Po and β + γ of 214Pb will be subtracted in the U/Rn chain. In the Th chain the subtraction involves 224Ra, 220Rn, 216Po and 212Bi α and 212Pb and 208Tl β + γ. The shape of these decays can be independently determined.

A particle can be separated from β± and γ-ray by the pulse shape discrimination (PSD), these efficiency is estimated 90% (Section 4.1, and [31]). And the quenching factor to relate the α energy with the equivalent β, γ energy was measured at 13.8[32]. These technique and property are very effective to the background suppression.

In Figure 2.4, upper figure shows a energy spectra of the estimated background for a single event after the “statistical subtraction” with $\delta E/E = 10\% \sqrt{E(\text{MeV})}$ of energy resolution. Lower figure shows recoil electron from solar neutrinos and the sum of background spectra as a function of the energy, here flux of solar neutrino is assumed SSM (Standard Solar Model). At this energy resolution, energy threshold for the solar neutrino detection will be 280keV (signal to noise ratio, S/N, is about ~1 at this energy) because of the 14C($Q_{\beta^-} = 156.475$keV) contamination.

Background rates of individual components in the relevant energy interval 280-800keV is shown in Table 2.2. In that interval, the signal will be dominated by 7Be solar neutrino, 466 events/kt/day at SSM.

On the other hand, accidental coincidences of single events make a false $\bar{\nu}_e$ signal. The single event rate above 1MeV from all natural radioactivities in the scintillator is estimated 936 events/day. On the condition of a delayed coincidence trigger, accidental rate is approximately 0.005 events/day. Correlated background from 214Bi-214Po, β + γ and α(6.9MeV) + γ(0.8MeV), pair event is estimated 0.0003 events/day, and correlated background from other Bi-Po, β + γ and α, pair events are suppressed due to α-quenching. Because a event rate of reactor $\bar{\nu}_e$ is estimated 2 events/day, the background for a delayed coincidence signal from natural radioactivities in the scintillator may be ignored.
Figure 2.4: Recoil electron and background for solar neutrinos at KamLAND. The upper figure shows a decomposition of the calculated background spectrum after the "statistical subtraction" (Section 2.4.2) and sum of them without the recoil electrons spectrum of solar neutrinos. The quenched α component [32] was added statistically. The lower figure shows the recoil electron’s energy spectrum derived from the solar neutrinos based on SSM, together with the total background. All spectra folded with the resolution $\delta E/E = 10\%/\sqrt{E(\text{MeV})}$ which corresponding to the light yield 100 p.e./MeV. 7Be solar neutrino events are recognized using the Compton edge of the recoil electron ($T_e \leq 665\text{keV}$).
<table>
<thead>
<tr>
<th></th>
<th>isotope</th>
<th>total</th>
<th>PSD and α-quenching</th>
<th>Statistical Subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>U β+γ</td>
<td>234Pa</td>
<td>39.3</td>
<td>39.3</td>
<td>39.3</td>
</tr>
<tr>
<td></td>
<td>214Pb</td>
<td>90.5</td>
<td>90.5</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>214Bi</td>
<td>4.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>210Bi</td>
<td>46.8</td>
<td>46.8</td>
<td>46.8</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>755.8</td>
<td>46.6</td>
<td>46.6</td>
</tr>
<tr>
<td>Rn β+γ</td>
<td>214Pb</td>
<td>91.3</td>
<td>91.3</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>214Bi</td>
<td>4.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>318.6</td>
<td>26.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Th β+γ</td>
<td>228Ac</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>212Pb</td>
<td>23.1</td>
<td>23.1</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>212Bi</td>
<td>9.8</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>208Tl</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>191.2</td>
<td>6.5</td>
<td>6.2</td>
</tr>
<tr>
<td>K β+γ</td>
<td>40K</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>14C β</td>
<td>14C</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Cosmogenic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11C</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>7Be</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2463</td>
<td>438</td>
<td>217</td>
</tr>
</tbody>
</table>

Table 2.2: Estimated background rate (events/kt/day) in the range 280keV to 800keV. Contaminations are assumed 10^{-16} for U/Th, 10^{-14} for K, 1μBq/m³ for Rn and 14C/12C=10^{-18}. And production rates of 7Be and 11C are assumed to be 400/kt/day and 3000/kt/day, respectively.
Chapter 3

KamLAND Physics and Required Features for the Detector

KamLAND will observe various neutrinos and anti-neutrinos, and we can study various phenomena, neutrino oscillation and so on. In this chapter, we describe the study will be achieved in KamLAND and requirements for the detector to observe these neutrinos in the last section.

The main target at KamLAND is the verification of $\nu_e (\bar{\nu}_e) \rightarrow \nu_x (\bar{\nu}_x)$ oscillation and solving the “Solar Neutrino Problem”. Now there are four reasonable neutrino oscillation solutions, LMA, SMA, LOW and VAC solution, to explain the solar neutrino anomaly, these solutions are implied by many experimental results. KamLAND can examine all of these solutions. LMA solutions can be examined directly using the anti-neutrino from Japanese nuclear reactors. And SMA, LOW and VAC solutions can be explored by ^7Be solar neutrino observation.

The other subjects of KamLAND are observation of terrestrial anti-neutrino, supernova neutrinos, and anti-neutrinos from the sun and past supernova. KamLAND will detect terrestrial anti-neutrinos which are products of the heat source in the Earth, and open the new physics. The terrestrial anti-neutrino will be recognized by characteristic two edges at 2.3MeV and 3.3MeV. Supernova neutrinos were first detected by old KAMIOKANDE[8], and impressed to all over the world. KamLAND has a chance to study on supernova more detail than KAMIOKANDE. In addition, KamLAND will search for the anti-neutrinos from solar and past supernovae.
Electron Antineutrino Flux at Kamioka

Figure 3.1: Expected $\bar{\nu}_e$ flux at the site of KamLAND.
3.1 Long Baseline Neutrino Oscillation Experiment Using Reactor Anti-Neutrino

Neutrino oscillation is observed at KamLAND from reactor anti-neutrino detection if LMA solution is correct. The energy of reactor anti-neutrino is about several MeV, and the distance from reactors to Kamioka is about 170km on average. Figure 3.2 shows the relation between distance from Kamioka to each Japanese reactors and expected event rate from each reactors. Number of emitted $\bar{\nu}_e$ at each reactor is proportional to the reactor power, and expected flux at Kamioka is depends on to the power flux. Power flux is defined as:

$$\text{(power flux)} = \frac{P_i}{4\pi r_i^2}$$ (3.1)

here, P_i is the electricity output of each reactor and r_i is the distance from Kamioka to each reactor. “Kashiwazaki” reactors are main anti-neutrino source. KamLAND is the long baseline neutrino oscillation experiment, and neutrino oscillation is observed from verification that the number of detected events is smaller than expected number of events. On this condition, KamLAND will can examine LMA solution ($\Delta m^2 \sim 2 \times 10^{-5}[eV^2]$, $\sin^2 2\theta \sim 0.7$) directly for the first time in the world.

Figure 3.2: Distance from Kamioka to each Japanese reactors and expected event rates derived from each reactors. About 80% of all anti-neutrino events from reactors comes from the reactors which are place in the region from 140km to 210km.
3.1.1 Anti-Neutrino from Reactor

The anti-neutrino flux and spectrum depend only on the four isotopes ^{235}U, ^{238}U, ^{239}Pu and ^{241}Pu being fissioned in the reactor. Anti-neutrinos are produced by long chains of daughter isotopes and hundreds of different β-decays. Contribution percentages of these four isotopes are 70% of ^{235}U, 30% of ^{239}Pu and those of ^{238}U and ^{241}Pu are very small as ignored. The energy dependences of number of anti-neutrino from one fission derived from ^{235}U and ^{239}Pu are shown in Figure 3.3 which are measurement results[4, 11]. The uncertainty is about 3%.

![Figure 3.3: The energy spectrum of the number of anti-neutrino from one fission derived from ^{235}U and ^{239}Pu. These are measurement results at [4, 11].](image)

The modeling of such processes is very difficult, but there is now very good agreement between theoretical calculations and experimental data[15, 3, 6]. Although fission rate of each isotopes are changed about 30%, total error in these measurements are about 1.4%. The expected average anti-neutrino flux at Kamioka from Japanese reactors are shown in Figure 3.4. This flux is calculated using the electricity output data from April 1997 to March 1998, and assumed that $^{235}\text{U}/^{239}\text{Pu}$ contribution ratio is 70%/30%. Here it is not considered the influence of neutrino oscillation.
Figure 3.4: Anti-neutrino mean flux at Kamioka from the nuclear reactors which is calculated using the electricity output data from April 1997 to March 1998. In this figure, it is not considered about oscillation.

3.1.2 Oscillation Study using Anti-Neutrino from Reactor

Event Rate and Energy Spectrum Shape

Visible energy spectra of anti-neutrino event is shown in Figure 3.5 for 3kt-year statistics. The cross section for the calculation of these spectrum is lowest-order, and the visible energy denotes the detected energy of the prompt event in delayed coincidence event, $E_{\text{visible}} = E_{\nu_e} - 0.782\text{MeV}$. It is assumed that the detection efficiency is 100% and no background. Circle mark denotes the calculation result which is not consider neutrino oscillation, and square marker denotes the calculation result include the oscillation effect, here the oscillation parameters are treated as LMA solution parameters($\Delta m^2 = 2.0 \times 10^{-5}, \sin^2 2\theta = 0.7$). The event rate is about 486 events/year/600ton for no oscillation case and about 265 events/year/600ton for LMA oscillation case, respectively. Neutrino oscillation is observed not only from verification that the number of detected events is smaller than expected number of events but also from the shape of the energy spectrum will change. Figure 3.6 shows a ratio between
the number of observed events and that of expected events per 1MeV as a function of the visible energy. Error components are statistical error for observed and expected events only.

![Visible energy spectra of anti-neutrino at KamLAND for 3kt-year statistics](image)

Figure 3.5: Visible energy spectra of anti-neutrino at KamLAND for 3kt-year statistics, here anti-neutrino flux is calculated results using the electricity output data of nuclear reactors between April 1997 and March 1998, and the cross section for the $\bar{\nu}_e P \rightarrow e^+ n$ interaction is lowest-order one. Visible energy denotes the detected energy of the prompt event in delayed coincidence event, $E_{\text{visible}} = E_{\bar{\nu}_e} - 0.782 \text{MeV}$. Circle marker denotes the calculation result which is not consider neutrino oscillation. Square marker denotes the calculation result include the oscillation effect, here the oscillation parameters are treated as LMA solution parameters($\Delta m^2 = 2.0 \times 10^{-5}$, $\sin^2 2\theta = 0.7$).
Figure 3.6: Energy spectrum of ratio between the number of observed events and the number of expected events. Neutrino oscillation can be observed from the variation of a shape of this energy spectrum. In this figure, it is assumed that oscillation parameters follow to the LMA solution, and the origin of error is only statistical error.

Seasonal Variation - Total Reactor Power Flux dependence of Nuclear Reactor -

Those analysis of above paragraph is not suitable if the backgrounds event rate is high. The reason is that separating background events from anti-neutrino candidate events completely is impossible. Therefore, it is important to operate the background free analysis and to estimate the number of background events. We can operate the background free oscillation analysis and estimate the background using this fluctuation.

Japanese reactors electricity output are change 20~30% between one year for the maintenance. Figure 3.7 shows the relation of the reactor power flux and number of event per month, here statistics is 3kt year. In this analysis method, the slope of the
number of events as a function of the power flux will change if neutrino oscillation is present in the LMA solution region. And an intercept at power flux is 0 denotes the number of background events. At this statistics, errors of intercepts are ± 28.5 events/month for both of no oscillation case and LMA solution case.

Expected Sensitivity for Oscillation Parameters

Assumed to a fiducial volume is 600ton and no background, KamLAND can examine the LMA solution region, $\Delta m^2 = 1.2 \times 10^{-5} \sim 10^{-4}[eV^2]$ and $\sin^2 2\theta \geq 7.5$, at 90% C.L. for a half year. It will be reach at 99% C.L. for one year, and finally practical examined region is shown in Figure 3.8 at 99% C.L. for 5years(3kton year).
Figure 3.7: The reactor power flux dependence of the number of anti-neutrino at KamLAND for 3kt year statistics. The circle marker denotes the calculation result which is not consider neutrino oscillation. The triangle marker denotes the calculation result include the oscillation effect, here the oscillation parameters are treated as LMA solution parameters ($\Delta m^2 = 2.0 \times 10^{-5}$, $\sin^2 2\theta = 0.7$). We can operate the background free analysis from the observation of a slope, event rate to power flux.
Figure 3.8: Expected sensitivity for oscillation parameters, Δm^2 and $\sin^2 2\theta$. Most inside region denotes LMA solution which implied many experimental results, and outer two regions denote sensitive region of KamLAND. Assumed to the systematic error is 0% and 10% above region.
3.2 Solar Neutrino Detection and Oscillation Experiment

3.2.1 Solar Neutrino Observation at KamLAND

The nuclear fusion create solar energy. 98.5% of solar energy is derived from the pp-chain reactions and remaining 1.5% is created by CNO cycle reactions. Figure 3.9 shows all process of pp-chain. pp, pep, \(^7\)Be, \(^8\)B, and hep neutrinos are produced by these reactions. The flux of these neutrinos are shown in Figure 3.10. The main target of KamLAND is \(^7\)Be neutrinos \((5.15 \times 10^9 / \text{cm}^2 / \text{sec}^{-1})\),

\[
\begin{align*}
\ ^7\text{Be} + e^- & \rightarrow \ ^7\text{Li} + \nu_e \ (90\%, E = 862\text{keV}) \quad (3.2) \\
& \rightarrow \ ^7\text{Li} + \nu_e + \gamma \ (10\%, E = 384\text{keV}) \quad (3.3)
\end{align*}
\]

The recoil electron energy spectrum derived from \(^7\)Be(862keV) neutrino interaction is continuous spectrum whose maximum energy is 665keV (Section 2.2).

Expected spectrum of solar neutrino and background as a function of the energy are shown in Figure 2.4. Assuming to the energy resolution is \(10\% / \sqrt{E(\text{MeV})}\), trigger threshold is determined at 280keV owing to the contamination of \(^{14}\)C \((Q_{\beta^-} = 156.475\text{keV})\).

Expected event rate of \(^7\)Be neutrino at KamLAND is shown in Table3.1. It is assumed that background sources in the detector(U, Th, K, and Rn) are reduced to our aim, \(< 10^{-16}\text{g/g} \) for U/Th, \(< 10^{-14}\text{g/g} \) for K and \(< 1\mu\text{Bq/m}^3 \) for Rn. (Section 2.4.2).

<table>
<thead>
<tr>
<th>Source type</th>
<th>Rate(280-800keV) [counts/kt/day]</th>
<th>(\nu_e \rightarrow \nu_{\mu,\tau})</th>
<th>(\nu_e \rightarrow \nu_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar (\nu_e)</td>
<td>SSM</td>
<td>466</td>
<td></td>
</tr>
<tr>
<td>LOW</td>
<td>262</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>SMA</td>
<td>98</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Background without S.S.</td>
<td></td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>with S.S.</td>
<td></td>
<td>217</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.1: Event rates in the energy interval 280-800keV. S.S. denotes “Statistical Subtraction”2.4.2. \(\nu_s\) denotes sterile neutrinos

3.2.2 Oscillation Study using \(^7\)Be Solar Neutrino

Figure 3.11 shows the relation of the solar neutrino and its survival probabilities at SMA solution, LMA solution, and LOW solution. LMA solution will be tested using reactor anti-neutrino at KamLAND directly.
Survival probability of SMA solution is nearly 0 at the 7Be solar neutrino energy (862keV). So, the SMA solution can be recognized by essentially null flux of 7Be neutrino. Expected event rates in the energy window, 280-800keV, are 98 events/kt/day for $\nu_e \rightarrow \nu_{\mu,\tau}$ oscillation and 2 events/kt/day for $\nu_e \rightarrow \nu_\alpha$ oscillation.

For LOW solution, survival probability of night is much bigger than day’s one at 7Be energy, the difference between them is expected for 3% ~ 50%. KamLAND can examine the LOW solution with a day-night asymmetry, this is the background free analysis.

At last, VAC solution is examined by observing seasonal variation of 7Be solar neutrino event rate. This rate will change from 27 events/day to 124 events/day if the VAC solution is the correct solution.
Figure 3.9: All nuclear fusion process of pp-chain. Four type neutrinos, pp, pep, 7Be, 8B, and hep, are produced in these reactions.

Figure 3.10: Solar neutrino flux which is calculated by J.Bahcall in 1998 based on the SSM. “Gallium”, “Chlorine” and “SuperK” denote the sensitivity region of each experiment. KamLAND sensitivity region is same as the Chlorine experiment’s one.
Figure 3.11: The energy dependence of the Solar neutrino survival probabilities which is calculated by the J.Bahcall. The survival means ν_e created in the sun to remain ν_e upon arrival at the KamLAND detector. The best-fit MSW solutions are computed including regeneration in the earth at night. The solid line refers to the one-year average survival probabilities computed taking into account regeneration in the earth. The dotted line refers to calculations for the day-time and the dashed line is the one-year average night-time survival probability (with regeneration).
3.3 Terrestrial Anti-Neutrino Detection

3.3.1 Terrestrial Anti-Neutrino

Earth emits the radiation heat about 16[TW]. The main source of this heat is the decay energy of radioactive elements, 238U, 232Th, and K. Anti-neutrinos are produced by β-decays in above decays. KamLAND can study the internal structure of the Earth with observing the this terrestrial anti-neutrinos. Figure 3.12 shows calculated flux of terrestrial anti-neutrinos(U, Th and K-decay series) based on the most popular terrestrial structure model(Table 3.2). There are several models about the terrestrial structure, and the absolute value of flux, U, Th and K-series, depend on each terrestrial model. Maybe, KamLAND will decide the correct terrestrial structure model through the terrestrial anti-neutrino observation.

Many characteristic edges can be noticed in these flux. KamLAND will detect these anti-neutrinos using the delayed coincidence technique, and the energy threshold is 1.8MeV. The energy of these edges are 3.3MeV(214Bi-decay) and 2.3MeV(234Pa-decay) in 238U-decay series(E>1.8MeV), and 2.3MeV(212Bi-decay) and 2.1MeV(228Ac-decay) in 232Th-decay series(E>1.8MeV). Furthermore, the rate of terrestrial anti-neutrino events at KamLAND is estimated 47events/year/600ton, and Figure 3.13 shows event rate spectrum as a function of a $\bar{\nu}_e$ energy. Terrestrial neutrinos are recognized benefit of these characteristic edges in the energy spectrum although the statistics is very small compared with the reactor anti-neutrinos. Figure 3.14 show $\bar{\nu}_e$ spectrum as a function of the visible energy. There are characteristic edges at about 1.5MeV and 2.5MeV.

3.3.2 Oscillation Study using Terrestrial Anti-Neutrino

The shapes of U-series and Th-series energy spectra do not change if the effect of the neutrino oscillation cannot be ignored, because each energy spectrum shapes do not depend on the terrestrial model. In other words, KamLAND can study the neutrino oscillation using the shape of the energy spectrum if we can know the ratio of two flux,

<table>
<thead>
<tr>
<th>feature</th>
<th>thickness [km]</th>
<th>U abundance [ppm]</th>
<th>U intensity [Bq/m3]</th>
<th>Th abundance [ppm]</th>
<th>Th intensity [Bq/m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>crust</td>
<td>35</td>
<td>0.91</td>
<td>9.23×10^3</td>
<td>3.50</td>
<td>1.16×10^4</td>
</tr>
<tr>
<td>mantle</td>
<td>2900</td>
<td>0.015</td>
<td>8.31×10^2</td>
<td>0.060</td>
<td>1.08×10^3</td>
</tr>
<tr>
<td>core</td>
<td>3500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.2: U/Th distribution of most popular terrestrial structure model
U-series and Th-series. In particularly, the ratio of the two edges at \(\sim 2.3\text{MeV}\) and \(\sim 3.3\text{MeV}\) will change if the region of \(\Delta m^2\) is about \(10^{-7.5} \sim 10^{-6}\)(\(\sin^2 2\theta = 1.0\)).

![Anti-Neutrino Flux from U decay series](image1)

![Anti-Neutrino Flux from Th decay series](image2)

![Anti-Neutrino Flux from K decay series](image3)

Figure 3.12: Terrestrial anti-neutrino flux from U, Th and K decay series. There are many characteristic edges. There are several models about the terrestrial structure, and the absolute value of two flux, U,Th and K-series depend on the terrestrial model. We can know the correct terrestrial model from the anti-neutrino observation.
Figure 3.13: The energy spectrum of the terrestrial anti-neutrino for one year at KamLAND. It is assumed that the fiducial mass is 600 ton. The number of events for one year is estimated about $47\text{events/year/600ton}$. There are two characteristic edges at about $2.1\sim2.3\text{MeV}$ and 3.3MeV.

Figure 3.14: Visible energy spectrum of $\bar{\nu}_e$ from the terrestrial and Japanese reactors, statistics is 3kt year. Visible energy denotes the detected energy of the prompt event in delayed coincidence event, $E_{\text{visible}} = E_{\bar{\nu}_e} - 0.782\text{MeV}$. The terrestrial neutrinos are recognized benefit of two characteristic edges, $E_{\text{visible}} \sim 1.5$ and 2.5MeV.

49
3.4 Supernova Detection

The KamLAND detector, containing a large amount of carbon, opens the possibility of detecting the scattering of ν and $\bar{\nu}$ from supernovae explosions on carbon nuclei.

With the standard supernova, type II (total energy release $= 3 \times 10^{53}$ erg; $T(\nu_e) = 3.5\text{ MeV}, T(\bar{\nu}_e) = 5.0\text{ MeV}$ and $T(\nu_{\mu,\tau}, \bar{\nu}_{\mu,\tau})$), at the distance of 10 kpc from the Earth, we arrive at the KamLAND count rate of,

$$N_\nu = \frac{35.3(\sigma)}{T(\text{MeV})}\text{ counts},$$

(3.4)

here, the thermally averaged cross section $\langle \sigma \rangle$ is in units of 10^{-42} cm^2 and the temperature is in MeV. We assume here that the detection efficiency is 100%.

Of particular interest for the supernova detection at KamLAND are the charged current reactions;

1. $\bar{\nu}_e p \rightarrow n e^+ (E_{Th.} = 1.8\text{ MeV}, \tau \sim 175\mu\text{sec.})$ (3.5)
2. $\nu_e ^{12}C \rightarrow ^{12}N e^- (E_{Th.} = 17.3\text{ MeV}, T_{1/2} \sim 11.0\text{msec.}, Q_{E.C.} = 17.3\text{MeV})$ (3.6)
3. $\bar{\nu}_e ^{12}C \rightarrow ^{12}Be^+ (E_{Th.} = 14.4\text{ MeV}, T_{1/2} \sim 20.4\text{msec.}, Q_\beta = 13.4\text{MeV})$ (3.7)

and the neutral current reactions;

4. $\nu_x (\bar{\nu}_x) ^{12}C \rightarrow ^{12}C^* \nu_x (\bar{\nu}_x) (E_{Th.} = 15.11\text{MeV})$ (3.8)
5. $^{12}C^* \rightarrow ^{12}C \gamma (15.11\text{MeV})$ (3.9)

populating the 15.11 MeV state in ^{12}C. Here, x denotes e, μ and τ, and details are described in 2.3. The signal for these exclusive reactions will be essentially background free due to the possibility of observing the delayed coincidence of the charged current reactions and the sharp peak at 15.11 MeV for the neutral current reaction.

The expected number of events is shown in Table 3.3. The first line gives the number of events expected without effects of neutrino oscillation. Next two lines give the expected number of events when oscillations are present, vacuum oscillation and MSW oscillations. When vacuum solution is correct, charged current reactions A, B and C will increase because of $\nu_\mu (\bar{\nu}_\mu) \rightarrow \nu_e (\bar{\nu}_e)$ oscillation. For MSW solution, only reaction B will be increase because of $\nu_\mu \rightarrow \nu_e$ oscillation with matter effect.

Compared the number of events of $B+C$ from that of D, we will know that the oscillations are present. It will be very difficult to distinguish the reaction B and C, however we will know vacuum oscillation or MSW by comparing the number of events, $A, B+C$ and D.

50
Table 3.3: Expected number of events in KamLAND for supernova neutrinos scattering on carbon and proton.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\bar{\nu}_e p \rightarrow ne^+$</td>
<td>$\nu_e^{12}\text{C} \rightarrow ^{12}\text{Ne}^-$</td>
<td>$\bar{\nu}_e^{12}\text{C} \rightarrow ^{12}\text{Be}^+$</td>
<td>$\nu_x (\nu_x) ^{12}\text{C} \rightarrow ^{12}\text{C}^* \nu_x (\nu_x)$</td>
</tr>
<tr>
<td>no osc.</td>
<td>330</td>
<td>1.9</td>
<td>7.4</td>
<td>57.6</td>
</tr>
<tr>
<td>vacuum osc.</td>
<td>\sim 600</td>
<td>14.5</td>
<td>13.8</td>
<td>57.6</td>
</tr>
<tr>
<td>MSW osc.</td>
<td>330</td>
<td>27</td>
<td>7.4</td>
<td>57.6</td>
</tr>
</tbody>
</table>
3.5 Anti-Neutrinos from the Sun and Past Supernovae

KamLAND will be the first large detector capable of identifying electron-anti-neutrinos from extra-terrestrial sources with very small backgrounds, hence opening an entirely new window for the exploration of unknown phenomena. The delayed coincidence technique used by KamLAND to identify $\bar{\nu}_e$ provides a very effective background rejection, so that the expected background due to muon-produced neutrons and γ-rays from natural radioactivity and cosmogenic isotopes will amount to less than 0.1 event/day (~37 events/year) above 8 MeV. Below 8 MeV the reactor and terrestrial neutrinos will dominate, and below 30 MeV atmospheric anti-neutrino will be negligible (several events per year). Therefore, following two anti-neutrinos will search in the energy window 8 ~ 30 MeV. Basically, we cannot discriminate such two anti-neutrinos, however it is very surprising incident that anti-neutrinos will be detect in this energy window.

One possible source of $\bar{\nu}_e$ is the Sun. There is little possibility of the transition $\nu_e \rightarrow \bar{\nu}_\mu \rightarrow \bar{\nu}_e$ if electron-neutrino has the magnetic moment. $\nu_e \rightarrow \bar{\nu}_\mu$ transitions, resonant spin flavor rotation, is due to the interaction with the magnetic field of the Sun, and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ transitions are derived from neutrino oscillation between the Earth and Sun, vacuum oscillation. The upper limit on the anti-neutrino flux above 8.3 MeV is $9 \times 10^4 \text{cm}^{-2}\text{sec}^{-1}$ (@95% CL) which is about 1% of the solar neutrino flux. Such flux would produce in KamLAND a clear signal of ~900 events/year in the region above 8.3 MeV, hence in one year we could put a 95% CL upper limit on the anti-neutrino flux of $3 \times 10^3 \text{cm}^{-2}\text{sec}^{-1}$, or 0.1% of the flux of neutrinos from the sun.

Another possible source of anti-neutrinos could be given by the past supernovae. Such catastrophic events produced ν and $\bar{\nu}$ that accumulated in the universe. Because of the red shift, the energy spectrum carries information on the time distribution of large collapses during the history of our universe. We would expect to detect about 40 events/year within above energy window following to one of the standard models.
3.6 Required Features for the Detector

The main target of KamLAND experiment is the examination of LMA solution using low energy (1.8–8MeV) electron-anti-neutrino from Japanese nuclear reactors which described in the Section 3.1. Anti-neutrinos will be detect using the delayed coincidence technique, so the energy threshold for this type neutrinos detection is 1.8MeV (Section 2.1). In this energy range, another anti-neutrino, terrestrial anti-neutrino, will be detected as described in the Section 3.3. The terrestrial anti-neutrino detection is also important subject of KamLAND, and the energy of this is less than about 3.3MeV. Moreover, 7Be solar neutrino (862keV) observation is also important target of KamLAND experiment for the exploration of SMA, LOW and VAC solution. The kinematic energy of recoil electron is less than 665keV. To achieve these neutrinos detection, required features for the detector are;

- Large size for high statistics
- Very sensitive at above a few keV energy
- High energy resolution at least $\delta E/E = 10\%/\sqrt{E(MeV)}$ (100 p.e./MeV)
- Very very low background
- High flash point for safety (>60°C)

The most simple method of an observation for neutrino oscillation is verify a number of detected neutrino is smaller than expected number. High statistics and high sensitivity are important feature to decrease statistical and systematic error. In following section 3.6.1, it is described the reason why high energy resolution is required Low background environment and capability of background suppression are proper requirement to decrease the systematic error.

The liquid scintillator satisfy above features, this is very sensitive at the energy range above a few hundred keV and that the contamination of radioactive sources which are the background sources are very low. Moreover, the underground site, the multiple layers structure of KamLAND and its purification system are very effective to suppress the background. In addition, time response of the liquid scintillator and PMT is very good, so that the dead time of KamLAND will be very short.

3.6.1 Necessity of High Energy Resolution

At the early stage of the experiment, purification will not not enough. Radioactive impurities in the scintillator will be 10^{-14}g/g for U/Th, 10^{-12}g/g for K and 500mBq/m³
for Rn when experiment start. In case of this, background for delayed coincidence signal($\bar{\nu}_e$ signal) may be serious. At the following condition to select $\bar{\nu}_e$ events,

- $E_{\text{prompt}} \geq 1\text{MeV}$
- $1.85\text{MeV} \leq E_{\text{delayed}} \leq 2.59\text{MeV}$
- $|V(x, y, z)_{\text{prompt}} - V(x, y, z)_{\text{delayed}}| \leq 1\text{m}$
- $10\mu\text{sec} \leq T_{\text{delayed}} - T_{\text{prompt}} \leq 500\mu\text{sec}$
- a misidentification probability α against β, γ is 10%
- α-quenching factor is 13.8

accidental background rate and correlate background rate are estimated 0.17 events/kt/day and 0.006 events/kt/day, respectively. Percentage of background rate to reactor $\bar{\nu}_e$ event rate(2 events/kt/day; no oscillation) and terrestrial $\bar{\nu}_e$ event rate(0.2 events/kt/day) are 9% and 85%, respectively. Background rate will be reduced at the narrow delayed signal window. However detection efficiency of the delayed signal(2.2MeV γ-ray) will be reduced if energy resolution is unsatisfactory. At resolution $\delta E/E = 10\% \sqrt{E(\text{MeV})}$ and $14\% \sqrt{E(\text{MeV})}$, the detection efficiency of delayed signal are 99% and 92%, respectively(1.85MeV $\leq E_{\text{delayed}} \leq 2.59\text{MeV}$). And, it is also easy to recognize the change of the energy spectrum following to the neutrino oscillation as the good energy resolution.

Even if radioactive impurities are reduced at our aim, U/Th $\leq 10^{-16}\text{g/g}$, K $\leq 10^{-14}\text{g/g}$ and Rn $\leq 1\mu\text{Bq/m}^3$, high energy resolution is very important, especially ^7Be solar neutrino detection. The energy window for ^7Be neutrino observation is decided by contamination of ^{11}C(visible energy 1.02-2.49MeV) and ^{14}C(visible energy $\leq 156.475\text{keV}$). We want to expand the energy window for high statistics, expected event rate of ^7Be neutrino is 466 events/kt/day(SSM) in the energy interval 280-800keV. At 280keV, S/N ratio(Signal to Noise) of ^7Be neutrino and ^{14}C is about 1 at energy resolution $\delta E/E = 10\% \sqrt{E(\text{MeV})}$.

Additionally, terrestrial anti-neutrinos are recognized from characteristic edges, especially $\sim 1.5\text{MeV}$ and $\sim 2.5\text{MeV}$(visible energy). These edges will be dull by the energy resolution, so it is not easy to recognize terrestrial anti-neutrino because of low flux. These edges become more sharp as the energy resolution become good.

In summary, we can study various physics which described in this chapter until good detector, the energy resolution and S/N is high, is accomplished. Observed energy is proportional to number of detected photons, light yield, and the energy resolution is depends on the light yield. High light yield is achieved until we use good scintillator
whose light-output (number of output photon) and attenuation length are good, or expands surface coverage of PMTs (use many PMTs). Expands PMT coverage is limited because of cost. So development of the scintillator whose light yield is high at the geometry of KamLAND is very important and essential. In following chapters, we describe the development of liquid scintillator for KamLAND.
Chapter 4

Measurement of the Light Attenuation-Length of the KamLAND Liquid Scintillator

KamLAND is a very large scintillation detector, diameter of the scintillator vessel is 13m, therefore the light attenuation length of the scintillator is crucial to the experiment. In this chapter, measurement of light attenuation length of the scintillator is described.

At first, overview of another measurements for the scintillator development, misidentification probability, light-output and emission spectrum are also described. Next measurement apparatus of the attenuation length and results are described.

These measurement are applied to a study of light yield[p.e./MeV] estimation. Calculation of the light yield at KamLAND requires several parameter(emission spectrum, quantum efficiency, coverage, balloon transparency) other than the attenuation length, so this calculation has several uncertainty. More strict estimation is postponed to the Chapter5.

From above measurements and calculations, we decide components and rough concentrations of KamLAND scintillator;

Paraffin Oil(80%) + P.C.(20%) + PPO(1~2g/l)

The attenuation length of this is 7.6m at 406nm of wavelength, and calculated light yields for central events and average inside the fiducial volume ($R \leq 5.5m$) are 158p.e./MeV and 190p.e./MeV, respectively.
4.1 Selection of the Components of the Liquid Scintillator

In order to achieve high energy resolution and low background at KamLAND, light yield, purity and capability of a PSD is essential for the scintillator. The light yield depends on light output (number of output photons), light transparency of the scintillator, balloon, buffer oil, acrylic plate and photo-sensitive area, quantum efficiency and collection efficiency of PMT dynodes.

From the point of transparency of the scintillator, paraffin oil has been chosen for a base liquid instead of Pseudocumen (P.C.; 1,2,4-Trimethyl Benzene) which is the most popular solvent for small detectors but has relatively worse transparency than paraffin oil. Figure 4.1 show the wavelength dependence of transparency of the paraffin oil and P.C., the thickness of two samples are 9cm. These spectra was measured by a light absorption meter (Figure 4.2). Transparency is defined as the intensity ratio of two light, pass through object cell (10cm) and reference cell (1cm). However, P.C. is necessary to keep light output and capability of a PSD sufficiently high. Mixture of paraffin oil and P.C. is tested as a solvent, and optimum ratio has been surveyed.

On the other hand, the liquid scintillator consists of a few solvent and a few solute. Traditionally, two solutes, primary solute and secondary solute, are added in solvents. For primary solute, PPO (2,5-diphenyloxazole) is selected because it has been used at many experiments [2, 15, 3] and cost performance. The secondary solute plays a part of the wavelength shifter, the concentration of this solute is about 0.1g/l order. Because of this low concentration, performance as scintillator (light output and PSD) does not depend on the type of wavelength shifter. Wavelength shifter absorbs the scintillation light from the primary solute and emits the scintillation light whose wavelength is more longer. We considered BisMSB as a wavelength shifter because of cost performance. Light emission spectra of PPO and BisMSB are shown in Figure 4.3. The emission spectrum is measured by a spectrophotometer, and schema meter is shown in Figure 4.4.

Figure 4.5 shows the apparatus of a misidentification probability (neutron against γ) measurement, here misidentification probability (Miss ID) denotes the percentage the neutron event is identified as γ-ray event. The scintillation light is emitted by neutron ($E_n=2.14\text{MeV}$) and γ-ray ($<1\text{MeV}$) from ^{252}Cf, and scintillation light is detected by 2”PMT. Tail charge and total charge of these scintillation light are measured by charge sensitive ADC. Pulse shape of the scintillation light from γ, β-ray is different from that of neutron, α. The decay time of heavy particles (neutron, α) is longer than that of light particles (γ, β). So the ratio of tail-charge/total-charge of light particle is less than that of heavy particle (Figure 4.6). Figure 4.7 and Figure 4.8 show a misidenti-
fication probability as a function of P.C. and PPO concentration, respectively. At the measurement of the P.C. dependence, we used only PPO as a solute of the scintillator (concentration is fixed at 2g/l.). When the BisMSB(0.1g/l) was added in the scintillator, both of results are consistent within 1%. It is to be desired that Miss ID is less than 10% because we want to examine the LMA solution, $\Delta m^2 \sim 2 \times 10^{-5}$, $\sin^2 2\theta \sim 0.7$. We can explore the neutrino oscillation at the $\sin^2 2\theta > 0.1$ region if error of the flux measurement is less than 10%. From this request, P.C. is need at least 20% and PPO is at least 1g/l.

The light output measurement apparatus is shown in Figure4.9. Scintillators emit the light from recoil electron which is scattered by γ-ray from 60Co, and this scintillation light is detected by 2"PMT. Light output of scintillators is compared using the ADC value of the compton edge. The measurement result as a function of PPO concentration is shown in Figure4.10, here the concentration of P.C. is fixed at 20%. The measurement result when the BisMSB(0.1g/l) was added in the scintillator is also consistent within 1%. The light output saturates at more than 2g/l of PPO. By the way, the light yield will be worse when PPO concentration is too much because of its self-absorption, especially at the large size detector, and it turn out that necessary concentration of PPO is 2g/l or less.

In summary, from the measurement of a misidentification probability, P.C. and PPO are necessary at least 20% and 1g/l, respectively. Suitable PPO concentration is 2g/l or less result from the light output measurement. When BisMSB is added in the scintillator at these measurements, results are consistent within 1%. We didn’t know from these results which is the good scintillator adding BisMSB one or not adding one. Finally, both of results at light output and misidentification probability measurements give components and their concentration of the KamLAND scintillator;

Paraffin Oil(80%) + P.C.(20%) + PPO(1~2g/l)
or
Paraffin Oil(80%) + P.C.(20%) + PPO(1~2g/l) + BisMSB(0.1g/l)

From measurement results using a absorption meter(Figure4.11), it is estimated that transparencies of above two scintillators are satisfied at the size of KamLAND. However, the transparency is much influential at the large size detector, KamLAND, we measure the light attenuation-length more accurately with long light path(1 ~ 3m). This apparatus and measurement results are described in following sections.
Figure 4.1: Light transparency spectrum of paraffin oil and P.C.. The transparency denotes the ratio(%) of two attenuated light, the input light is attenuated by the solvents whose thickness are 1cm and 10cm. The horizontal axis denotes the wavelength of the input light. Solid-line denotes the transparency of P.C. and dot-line denotes paraffin-oil’s one. At less than 400nm(wavelength) range, transparency of the paraffin-oil is much better than P.C.’s one.

Figure 4.2: This is the Light absorption meter, U2000F(HITACHI). The light emitted from the tungsten-lamp is divided to two light, one light pass through the 1cm reference cell filled with sample and another light pass through the 10cm object cell. Intensity of two lights are measured by photo-diodes. Transparency is defined as the ration of these intensity.
Figure 4.3: Light emission spectra of PPO and BisMSB. The horizontal axis denotes the wavelength of the emission light (scintillation light). The peak wavelength is about 375nm and 420nm, respectively. The wavelength of the scintillation light of BisMSB is longer than that of PPO.

Figure 4.4: This figure is the spectrophotometer. The light source is the Xe-lamp, and it is narrowed the wavelength at 300nm. Sample scintillators are excited by this light, and emit the scintillation light. Intensity of this scintillation light is measured by the photo-detector, here detected light is narrowed the wavelength by the diffraction grating. This narrowed wavelength is regulated by this grating.
Figure 4.5: Tail charge and total charge of the scintillation light by ^{252}Cf(neutron($E_n=2.14\text{MeV}$) and γ-ray($<1\text{MeV}$)) are measured.

Figure 4.6: The definition of the Miss ID. The decay time derived from heavy particles(neutron, α) is longer than that from light particles(γ, β). So the ratio of tail-charge/total-charge of light particle is less than that of heavy particle. Miss ID denotes the percentage the neutron(heavy particle) event is identified as γ-ray(light particle) event.
Figure 4.7: P.C. concentration dependence of the PSD efficiency. Miss ID denotes the percentage the neutron event is identified as γ-ray event, PSD efficiency is better as Miss ID become small. PSD is better as P.C. concentration become high.

Figure 4.8: PPO concentration dependence of the PSD efficiency. PSD efficiency almost unchanged when PPO concentration is bigger than 1g/l.
Figure 4.9: This is the light output measurement setup. Scintillators emit the light by recoil electron which is scattered by γ-ray from ^{60}Co (1.17, 1.33 MeV), and this scintillation light is detected by $2'$ PMT, and the light output is measured by ADC. Light output of scintillators is compared using the Compton edge. The measurement error is 7% (1σ).

Figure 4.10: PPO concentration dependence of the light output. The light output is saturated at 2 g/l.
Figure 4.11: Light transparency spectrum of two scintillators. The transparency denotes the ratio(%) of two attenuated light, the input light is attenuated by the solvents whose thickness are 1cm and 10cm. The horizontal axis denotes the wavelength of the input light. Solid-line denotes the transparency of the scintillator (A): Paraffin Oil(80%) + P.C.(20%) + PPO(2g/l), and dot-line denotes the transparency of another scintillator (B): Paraffin Oil(80%) + P.C.(20%) + PPO(1~2g/l) + BisMSB(0.1g/l). At less than 400nm(wavelength) range, (B) is not transparent because of the absorption of BisMSB.
4.2 Apparatus

Light attenuation length was measured using the setup shown in Figure 4.12. The light source is a \(\text{N}_2/\text{Dye-laser} \), and wavelength of the laser light can be change using various dyes. We measure the light intensities after transmission through long and short tubes, \(I(L) \) and \(i(l) \), simultaneously. \(I(L) \) is the light intensity which passes through the liquid scintillator in the long tube (light path = 2.75m) and \(i(l) \) is the light intensity which passes through the scintillator in the short tube (light path = 1m).

![Figure 4.12: Setup of the system of measurement. The laser beam is divided into two beams using the beam splitter, and divided beams pass through each tubes (the length are 2.75m and 1.0m) which are filled with the liquid scintillator. Moreover, two beams are delayed (500nsec and 1,000nsec) by using optical fibers to avoid the noise which is emitted from the laser, and these beams are detected by only one PMT to avoid the unstaility of the PMT.](image)

A noise is emitted from the laser system when the laser-light is emitted. In order to avoid a noise related to laser pulse emission, long optical fibers (core \(\phi = 200\mu\text{m} \)) are used as delay lines. Their length are 100m and 200m, providing 500nsec and 1,000nsec (1\(\mu\text{sec} \)) which is enough time to separate the noise from signals (Figure 4.13).

Integrating spheres and ND-filters are used so that the light intensity is weakened to the level manageable with the 2in\(\text{ch} \) PMT. Instability of the PMT gain is serious problem for the measurement if we use two or more PMT, thus we use only one PMT to measure both two light intensities. The schematics to measure two light intensities by single PMT is shown in Figure 4.14.

Laser output is influenced on the flow rate of the nitrogen gas, dye condition and so on. In Figure 4.15, left-side two histograms denote light intensities of two beams, \(I(L) \) and \(i(l) \). The hatched one is for \(I(L) \) and another for \(i(l) \), and upper and lower were measured in different period. In spite of the large drift of each intensities caused by laser
Figure 4.13: PMT signal on the oscilloscope. To separate the noise from laser signals, two light are delayed by using the optical fibers. One light is delayed by 500nsec, another is by 1,000nsec (1μsec).

Figure 4.14: Logical setup of this measurement is shown in this figure. To measure the two signal from one PMT, one signal is delayed more than another and measure both two pulse.
instability, the ratio $R = I/i$ taken pulse by pulse is kept quite stable as shown in right side of Figure 4.15. Upper mean value (0.947) and lower mean value (0.9489) are almost consistent.

Figure 4.15: Left-side two figure denotes the intensity of two beams. The hatched histogram is for $I(L)$, and another for $i(l)$. Taking a ratio of $I(L)$ to $i(l)$ pulse to pulse, instability of the laser output is canceled.
are defined as;

\[T = \frac{R_{\text{scintillator}}}{R_{\text{air}}} \quad (R = I(L)/i(l)) \] (4.1)

\[\Lambda = \left[\frac{L - l}{- \ln T} \right] = \left[\frac{1.75}{- \ln T} \right] \text{[m]} \] (4.2)

\[\delta \Lambda = \frac{\delta T}{T} = \Lambda^2 \frac{\delta T}{T} \] (4.3)

Here, \(\delta T \) and \(\delta \Lambda \) denote the measurement error of the transparency and the attenuation length, respectively.

However, it is impossible to remove all systematic errors. Systematic errors which cannot take off are measured by reproducibility. Various reproducibilities were checked, and these results are shown in Table 4.1. Total systematic error of transparency, \(\delta T \) is estimated less than 1.2% from summing up each reproducibility in this table. This corresponds to the \(\delta \Lambda \leq 1.4 \text{m at } \Lambda=10 \text{m} \)

<table>
<thead>
<tr>
<th>checked reproducibilities</th>
<th>(\delta T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(L - l=0 \text{m}))</td>
<td>(\leq 0.9%)</td>
</tr>
<tr>
<td>influence of reflection in tube</td>
<td>(\leq 0.24%)</td>
</tr>
<tr>
<td>position & direction dependence on integrating sphere</td>
<td>(\leq 0.73%)</td>
</tr>
<tr>
<td>Total</td>
<td>(\leq 1.2%)</td>
</tr>
</tbody>
</table>

Table 4.1: Various reproducibilities were checked. Total systematic error of transparency, \(\delta T \), is estimated less than 1.2%.

For N\(_2\)/Dye-laser, we use is LN203C Nitrogen Dye Laser(Laser Photonics). Specification of the product is described in Table4.2. The LN203C consists of a combination of a nitrogen laser and an optical dye laser module(Figure-reflaser). The nitrogen laser(wavelength = 337.1nm) is operable, and its beam accessible, with and without the dye module installed. Table 4.3 shows dyes and their peak wavelength.

Inside of the integrating sphere is painted by an optical diffuser making white reflective wall. Light from the input port is diffusely reflected inside the sphere, so the output port is uniformly illuminated independent of the initial beam alignment(Figure4.18). The scrambling effect of the sphere ensures that the output is insensitive to the spatial, angular and polarization condition of the input. The highly uniformed coating makes an almost perfect diffuse reflector. Wavelength dependence of reflection is small, and wavelength dependence of throughput is small, too(Figure4.17). Sphere throughput is defined as the ratio of the total output power to the total input power. It depends on the reflection and the ratio of the port area to sphere wall area. The integrating sphere we used is ‘70461 Fiber Optic Integrating Sphere’of ORIEL(Figure4.19).
<table>
<thead>
<tr>
<th>item</th>
<th>LN203C</th>
<th>Dye laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Output (nm)</td>
<td>337.1</td>
<td>357～710</td>
</tr>
<tr>
<td>Spectral Bandwidth (nm)</td>
<td>0.1</td>
<td>1～3</td>
</tr>
<tr>
<td>Pulse-width (ps FWHM)</td>
<td>600</td>
<td>300～500</td>
</tr>
<tr>
<td>Energy/Pulse (μJ)</td>
<td>100</td>
<td>Dye dependent</td>
</tr>
<tr>
<td>Conversion Efficiency (%)</td>
<td>N/A</td>
<td>15 at 500nm</td>
</tr>
<tr>
<td>Energy/ Stability (%) at 10Hz</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Peak Power (kW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition Rate (maximum) (Hz)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Maximum Average Power (mW)</td>
<td>5</td>
<td>Dye dependent</td>
</tr>
<tr>
<td>Beam Dimensions (hor.x ver.) (mm)</td>
<td>5.5 × 3.1</td>
<td>2.5mm at exit</td>
</tr>
<tr>
<td>Flow Rate (L/min) at 10Hz</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>Trigger In/Out</td>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>Command Jitter (nm)</td>
<td>±2</td>
<td></td>
</tr>
<tr>
<td>Input voltage</td>
<td>110V</td>
<td></td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td>71.3 × 21.3 × 13.3</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: Specifications of LN203C N₂/Dye laser

![Diagram](image)

Figure 4.16: Dye-Module
<table>
<thead>
<tr>
<th>Dye</th>
<th>Peak (nm)</th>
<th>Range (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPBD</td>
<td>365</td>
<td>357-395</td>
</tr>
<tr>
<td>PBD</td>
<td>366</td>
<td>360-386</td>
</tr>
<tr>
<td>BBQ</td>
<td>386</td>
<td>373-399</td>
</tr>
<tr>
<td>PBBO</td>
<td>400</td>
<td>391-411</td>
</tr>
<tr>
<td>DPS</td>
<td>406</td>
<td>396-416</td>
</tr>
<tr>
<td>BIS-MS13</td>
<td>421</td>
<td>411-430</td>
</tr>
<tr>
<td>S-420</td>
<td>425</td>
<td>408-453</td>
</tr>
<tr>
<td>C-440</td>
<td>437</td>
<td>427-457</td>
</tr>
<tr>
<td>C-450</td>
<td>446</td>
<td>428-465</td>
</tr>
<tr>
<td>C-460</td>
<td>457</td>
<td>440-478</td>
</tr>
<tr>
<td>C-480</td>
<td>470</td>
<td>453-495</td>
</tr>
<tr>
<td>C-481</td>
<td>481</td>
<td>460-518</td>
</tr>
<tr>
<td>C-500</td>
<td>500</td>
<td>473-547</td>
</tr>
</tbody>
</table>

Table 4.3: The structure and wavelength of dye

Figure 4.17: Internal reflectance and throughput of the integrating sphere
The PMT is the 2inch head-on type photo-multiplier tube(H1161-50) which is a product of HAMAMATU PHOTONICS K.K.. Table 4.4 shows specification of the PMT. The coupling of the optical fiber and the PMT is shown in Figure 4.20. Output light from optical fiber spreads by 0.2 (= tan \(\theta\)). Therefore, the FC connector is separated from the photo-cathode face by 10cm, so that the light expand to \(\phi 40\text{mm} \) which matches with the diameter of photo-cathode(\(\phi = 46\text{mm}\)).

<table>
<thead>
<tr>
<th>Photo-cathode</th>
<th>Bialkali</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material of Photo-current</td>
<td>UV Glass</td>
</tr>
<tr>
<td>Max. Overall Voltage(V)</td>
<td>-2700</td>
</tr>
<tr>
<td>Max. Bleeder Current(mA)</td>
<td>1.23</td>
</tr>
<tr>
<td>Max. Average Anode Current((\mu)A)</td>
<td>46 at 2000V</td>
</tr>
<tr>
<td>Dark Current</td>
<td>(\leq 100\text{nA})</td>
</tr>
<tr>
<td>Rise Time</td>
<td>2.7ns</td>
</tr>
<tr>
<td>Transit Time</td>
<td>40ns</td>
</tr>
<tr>
<td>Spectral Response Range</td>
<td>300 (\sim) 650nm</td>
</tr>
</tbody>
</table>

Table 4.4: Specifications of H1161-50
Figure 4.18: The incoming beam is diffusely reflected inside an integrating sphere. The output port cannot “see” the region of first impact.

Figure 4.19: 70461 Fiber Optic Integrating Sphere
Figure 4.20: Connection optical fiber with PMT.
4.3 Result of measurement

Measured samples are;

(A) Paraffin-oil(80%) + P.C.(20%) + PPO(2g/l)

and

(B) Paraffin-oil(80%) + P.C.(20%) + PPO(2g/l) + BisMSB(0.1g/l)

Obtained transparencies and attenuation lengths of scintillators are shown in Table 4.5. And Figure 4.21 shows attenuation length as a function of wavelength. Different marks denote different measurements, and all measurements are consistent within the error. The attenuation length at long wavelength is better than that at short wavelength.

Dash lines denote expected attenuation lengths using results of absorption meter (Figure 4.11). Error of expected results from absorption meter is very large because of the size (9cm of light path), and estimated about δΛ=5m at 10m of attenuation length. However, these two results agree with our measurements at 386nm of wavelength for (A) and at 421nm for (B).

At the short wavelength range (360~380nm), attenuation length cannot be measured since the intensity of Dye-laser is very weak at this range. We use results of absorption meter at this range for various calculation (Section 4.4).

For (A), the peak wavelength of the PPO emission is about 375nm (figure 4.3). Scintillator (B) is opaque below 410nm of the wavelength because of absorption of the BisMSB, attenuation length is 15.5m at 437nm of wavelength. And peak wavelength of the BisMSB emission is about 420nm.

<table>
<thead>
<tr>
<th>wavelength</th>
<th>$T_{(A)}$</th>
<th>$T_{(B)}$</th>
<th>$\Lambda_{(A)}$</th>
<th>$\Lambda_{(B)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>@386nm</td>
<td>79.1%</td>
<td>-</td>
<td>5.3m</td>
<td>-</td>
</tr>
<tr>
<td>@406nm</td>
<td>84.9%</td>
<td>-</td>
<td>7.6m</td>
<td>-</td>
</tr>
<tr>
<td>@421nm</td>
<td>88.6%</td>
<td>56.1%</td>
<td>10.3m</td>
<td>2.2m</td>
</tr>
<tr>
<td>@437nm</td>
<td>-</td>
<td>88.5%</td>
<td>-</td>
<td>10.2m</td>
</tr>
<tr>
<td>@446nm</td>
<td>91.0%</td>
<td>89.5%</td>
<td>13.3m</td>
<td>11.3m</td>
</tr>
<tr>
<td>@470nm</td>
<td>92.1%</td>
<td>92.1%</td>
<td>15.2m</td>
<td>15.2m</td>
</tr>
</tbody>
</table>

Table 4.5: Table of transparencies (T) and attenuation lengths (Λ) calculated from T for scintillators (A) and (B).
Figure 4.21: Attenuation length spectrum of the scintillator. ○, × and ■ are measurement results, all measurement results are consistent within estimated error. Dash lines denote the expected attenuation lengths using the absorption meter. Error of expected results from absorption meter is very large because of the size (9cm of light path), and estimated about δΛ=5m 10m of attenuation length. For the scintillator which is added BisMSB, this is opaque below 410nm of the wavelength because of absorption of the BisMSB.
4.4 Estimation of the Light Yield

The light yield (p.e./MeV) of the KamLAND detector can be calculated by results of light-output, attenuation length (Figure 4.21), emission spectrum (Figure 4.3), PMT quantum efficiency (Figure 1.13), surface coverage of PMTs (36%), balloon transparency (94%). Considering these effects, detection spectra after transferring 6.5m of two scintillator are obtained as shown in Figure 4.22. Scintillation lights below peak emission wavelength is no more effective.

Vertex dependences of light yield are shown in Figure 4.23, the horizontal axis is the distance from the center of the detector to the emission point. The error of detected photon is at least 10% which only contains uncertainty from the attenuation-length and light-output measurements. From this figure, the light yield is larger as the emission point goes close to the PMT surface. The light yield of the KamLAND detector is about ~ 158 p.e./MeV for central events.

For uniformly distributing events inside the fiducial volume ($R \leq 5.5$m is expected), average light yields are shown in Table 4.6.

<table>
<thead>
<tr>
<th>scintillator</th>
<th>average light yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Paraffin-oil(80%)+P.C.(20%)+PPO(2g/l)</td>
<td>~ 190 p.e./MeV</td>
</tr>
<tr>
<td>(B) Paraffin-oil(80%)+P.C.(20%)+PPO(2g/l)+BisMSB(0.1g/l)</td>
<td>~ 180 p.e./MeV</td>
</tr>
</tbody>
</table>

Table 4.6: Average light yield of two scintillator. It is assumed that events distribute uniformly inside the fiducial volume which is expected 5.5m.

In these estimations, effects from reemission is not taken into account. It will increase total number of photons to be detected, thus they are off timing (delayed) hits.
Figure 4.22: Wavelength dependences of emission lights and detected lights. Filled spectrum denote detected light spectra, and non-filled spectra are the emission light spectrum. Detected light is the light which is detected by PMTs at KamLAND. These spectra are calculated using various parameter, light-output, attenuation length(Figure4.21), emission spectrum(Figure4.3), PMT quantum efficiency(Figure1.13), surface coverage of PMTs(36%), balloon transparency (94%).
Figure 4.23: Position dependence of the light yield.
4.5 Summary

KamLAND will detect low energy (above a few hundred keV) neutrinos and antineutrinos. Here, high energy resolution give us accurate studies, for example deciding oscillation parameters precisely.

The energy resolution depends on the light yield, the number of detected photoelectron [p.e./MeV]. In other words, developing a high light yield scintillator is very important.

From the light output and misidentification measurements, components of the KamLAND scintillator has been chosen as,

\[(A) \text{ Paraffin Oil}(80\%) + \text{ P.C.}(20\%) + \text{ PPO}(1\sim2g/l)\]
\[\text{or}\]
\[(B) \text{ Paraffin Oil}(80\%) + \text{ P.C.}(20\%) + \text{ PPO}(1\sim2g/l) + \text{ BisMSB}(0.1g/l)\]

We have measured light attenuation lengths above scintillators (Figure 4.21), and have estimate light yields of the KamLAND detector (Figure 4.23). The mean light yields of the KamLAND detector are estimated to be \(\sim190\) p.e./MeV for (A) and \(\sim180\) p.e./MeV for (B), here the error of these estimations are more than 10%.

From various measurements, attenuation-length, light-output and misidentification probability, we could not find a merit to use BisMSB as the wavelength shifter. On the other hand, adding BisMSB cost much more money and this is insoluble as compared with PPO. At the present stage, we think that adding BisMSB has some demerits, and decide **not to use the BisMSB for the component of KamLAND scintillator**.

In summary, we decide components and rough concentrations of KamLAND scintillator. P.C. is need at least 20% and PPO is at least 1g/l result from measurements of a misidentification probability,. From the point of transparency, paraffin oil has been chosen for a base liquid, and necessary concentration of PPO is 2g/l or less. BisMSB is not necessary because we could not find a merit using it from various measurement results.

<table>
<thead>
<tr>
<th>Paraffin Oil(80%) + P.C.(20%) + PPO(1~2g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>attenuation length</td>
</tr>
<tr>
<td>7.6m @ 406nm</td>
</tr>
<tr>
<td>estimated light yield</td>
</tr>
<tr>
<td>(\sim158) p.e./MeV (central events)</td>
</tr>
<tr>
<td>(\sim190) p.e./MeV (on average (R \leq 5.5)m)</td>
</tr>
</tbody>
</table>
Chapter 5

Direct Light Yield Study of the KamLAND Liquid Scintillator

Direct measurement of the light yield is the best way to estimate the actual photoelectron number in a large liquid scintillator system. We have made 6.8m long liquid scintillator system. The light yield was measured by detecting the scintillation light from the cosmic-ray muons. The distance from the emission position to the detection position is 640cm (KamLAND scintillator vessel radius is 650cm). From this measurement, we determined the components of the liquid scintillator for KamLAND to be,

\[\text{N12}(80\%) + \text{P.C.}(20\%) + \text{PPO}(1.5\text{g/l}), \]

where, N12 is normal Dodecane, P.C. is pseudocumene(1,2,4Trimethyl Benzene).

Using the measurement results, the light yield of the KamLAND detector is \(\sim 180\text{p.e./MeV} (\text{Threshold} = 1/4\text{p.e.}) \) for the central events, if average transparency of the vessel balloon is 94%, and the number of 17"PMT and 20"PMT are 1295 and 590, respectively. This corresponds to statistical energy measurement fluctuation of

\[\delta E/E = 7%/\sqrt{E(\text{MeV})}. \]
5.1 Motivation

KamLAND will detect the low energy neutrinos and anti-neutrinos. For example, the energy range of the reactor anti-neutrinos is several MeV and that of the solar neutrinos, especially 7Be neutrino, is 862keV. To detect such a low energy neutrino, the energy resolution of KamLAND have to be good in the energy region from a few hundred keV to several MeV.

The energy resolution is depends on the number of the detected photon(light yield). So, the light yield study of the liquid scintillator is very important. Moreover, optimizing component from the light yield study is also very important.

The light yield depends on the light output and transparency of the liquid scintillator, PMT quantum efficiency, number of PMTs, and so on. We can estimate the light yield from measurement results of the light-output study. However these measurements well performed in the apparatus which is smaller than KamLAND, and wavelength dependence cannot be taken into account well. Therefore, the direct measurement is the best way to study the actual light yield.

5.2 Liquid Scintillator

The Base liquid of the liquid scintillator for KamLAND is paraffin oil. The transparency of paraffin oil is better than pseudocumene. The KamLAND scintillator consists of solvents and a solute, that is, paraffin-oil, Pseudocumene and PPO.

Paraffin-oil + Pseudocumene(P.C.) + PPO

P.C. is one of the most popular solvents to be used in large volume liquid scintillators, and PPO is one of the most popular solute. P.C. is indispensable component for the Pulse Shape Discrimination(PSD)[31]. There are two candidates for paraffin-oil, Isoparaffin(P2501) and Normal-Paraffin(N122). The transparency of N12 is little better than that of P250, but that difference is very little. So, we compared P250 and N12 by the long liquid scintillator system.

From other studies(light-output, PSD)[31], the ratio of the paraffin-oil to the solvent(P.C.) was decided to be 8 : 2. From other studies(light-output[31], light attenuation length[27], emission spectrum[26]), and a calculation using these results suggest that the best concentration of PPO is 1~2g/l.

1praoi 250, Showa Shell, Japan
2Normal Paraffin N12D, Cosmo Petroleum Company, Japan
5.3 Apparatus

5.3.1 Setup

The apparatus is shown in Figure 5.2. The liquid scintillator is filled in the anodized aluminum tube whose internal diameter is 14cm and the length is 683cm, both ends of the scintillator pipe are sealed by UV transparent acrylic plates of 35mm thick and viewed by 5” PMTs (HAMAATU R1250). The scintillation light is derived from the energy deposit of the cosmic ray muons. Three plastic scintillators (5cm×10cm, 5cm×10cm, and 10cm×16cm) sandwich the tube in order to tag the cosmic rays. To suppress the light reflection, there are thin Aluminun(anodized) rings at intervals of 40cm in the tube. The internal diameter of the ring is 11cm. From simple simulation, the amount of the reflection light is estimated to be less than 0.01%. The triple coincidence of plastic scintillation counters creates trigger signal, TDC-start and ADC-gate signals. ADC measure the total charge of 5” PMT and TDC measure the time between the time of the photon hits 5” PMT and the time the trigger is created (Figure 5.3).

5” PMT which is near trigger counter monitor the light-output, and we can know the deposit energy of muon. This PMT is called energy monitor. A radioactive source is used at energy calibration. On the other hand, there is another 5” PMT, 640cm away from trigger counter. The distance 640cm is near the KamLAND balloon radius of 650cm. The number of photoelectrons which is detected by the 2nd PMT is 0.1~0.2 p.e./Trigger, therefore the direct light yield is calculated by photon counting method. This PMT is called photon counter. When the photon counter does not detect photon (0 photon), TDC will be overflow. Because the probability that the photon counter detects photon is ~1/10, the average number of p.e. can be calculated from the Poisson distribution.

Moreover, the timing property of scintillation light is can directly be measured by the time distribution of the photon counter.

5.3.2 PMT

5” PMTs for photon counting and monitor are HAMAMATU R1250. The quantum efficiency (Q.E.) of the cathode is 22% which is the same value of 17” PMT Q.E.. 1 photoelectron charge distribution and transit time spread are shown in Figure 5.4. The transit time spread (TTS) is 3.1nsec (FWHM).

PMTs for trigger counter are HAMAMATU R580(1-1/2”).
Figure 5.1: The picture of the setup apparatus for the light yield measurement.

Angle $\phi = 14\text{cm}$
Angle $\phi = 11\text{cm}$
Tube $\phi = 14\text{cm}$
Slit $\phi = 11\text{cm}$

$5''$ PMT
683cm
640cm (~Balloon Radius)
40cm
10cm

Trigger

1~2 photon

0.1~0.2 p.e./Trigger

Photon counter
- ADC charge
- TDC stop (if 0 p.e. -> Over flow)

Light Yield (p.e./event)
- Statistic Analysis
- Poisson distribution

Decay Time of the scintillation
- TDC-stop distribution

Energy Monitor
- ADC charge
- TDC stop
- Light-output $\rightarrow E_\mu$
- Event selection

$5''$ PMT
683cm
640cm (~Balloon Radius)
40cm
10cm

Trigger

Figure 5.2: The liquid scintillator is filled in the long (683cm) tube, and the scintillation light is detected by two $5''$ PMT put on both ends of the tube. One PMT is used for the photon counting, and another is the scintillation light monitor of each event. The former is named photon counter, and the latter is energy monitor. The cosmic ray muon is identified using the triple coincidence of the three scintillation counters (trigger counter) whose scintillator are the plastic scintillator, and this coincidence signal is the event trigger. The distance from the trigger counter to photon counter is 640cm which is almost same as the radius of the scintillator vessel (balloon) at KamLAND. The detected photon per event at the photon counter is 1~2 photon because the solid angle of the photon counter to the emission point is very small and the light is attenuated while propagate in the scintillator.
Figure 5.3: Total charges both of 5”PMT are measured by ADC, and the timing information is by TDC. ADC gate and TDC start signals are created from the trigger signal. For photon counter, the number of the detected photon is about 1photon, so that stop signal is rarely created.

Figure 5.4: 1photon charge and transit time distribution of 5”PMT.
5.4 Analysis method

The measurement results, charge and time distribution of photon counter and energy monitor, are shown in Figure 5.5. The peak (~160pC) in the charge distribution of photon counter is 1 p.e. peak. The shape of the photon counter time distribution reflects the shape of the emission, and the decay time (τ) is calculated from fitting. The dark shadow events in photon counter events, the overflow events about the charge and the fast events about time, are shower events. On the other hand, for the energy monitor, the charge reflects the deposit energy of muon and overflow events in the time distribution stands for accidental trigger (accidental coincidence of trigger counters).

After excluding background events (dark shadow), the number of the energy monitor event is N, and the number of the photon counter event is (N-n) (the number of overflow event is n). The analysis using Poisson distribution,

\[P(x) = \frac{\lambda^x}{x!} e^{-\lambda} \quad (x = 0, 1, 2 \ldots) \] (5.1)

produce the light yield. Here, \(\lambda \) is the mean photon number (p.e./event) and \(x \) is the number of photon per event. The number of the \(x = 0 \) events is equal to the number of TDC-overflow events, so that

\[P(0) = \frac{\lambda^0}{0!} e^{-\lambda} \]
\[= e^{-\lambda} \] (5.3)

\[\therefore \lambda[\text{p.e./event}] = -\ln [P(0)] \] (5.4)
\[= \ln \left[\frac{\# \text{ of events}}{\# \text{ of TDC-overflow events}} \right] \] (5.5)
\[= \ln \left(\frac{N}{n} \right) \] (5.6)

Using the above equation, the light yield per event [p.e./event] is measured.

The background which cannot be removed this analysis is that the scintillation light by the environmental radiation hit the photon counter (TDC-stop) before require light hit. This background is measured using random trigger. As a result, the background is less than \(10^{-3} \text{p.e./event} \). This can be ignored statistically.
Figure 5.5: Charge and time distribution of photon counter and energy monitor. The threshold of photon counter is 1/4 p.e. High pile-up expression backgrounds from shower events or accidental trigger. The threshold of photon counter is 1/4 p.e.
5.5 Measurement results

5.5.1 Paraffin-Oil Dependence of Light Yield

At first, we measured the light yield of two scintillators which were diluted with different paraffin-oils, one is diluted with normal-paraffin(N12) and the other is diluted with iso-paraffin(P250). Two scintillator are consists of

Paraffin-oil(80%) + P.C.(20%) + PPO(2g/l).

The measurement results are shown in Table 5.1. The light yield of the N12-base scintillator is better than P250-base one. From this result, it is find that N12 is better than P250 in terms of the light yield.

<table>
<thead>
<tr>
<th>Paraffin-Oil</th>
<th>N/n</th>
<th>Light Yield[p.e./event]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N12</td>
<td>96926/82987</td>
<td>0.155±0.001</td>
</tr>
<tr>
<td>P250</td>
<td>63052/55830</td>
<td>0.122±0.001</td>
</tr>
</tbody>
</table>

Table 5.1: Measurement results of scintillators which are diluted with different paraffin-oil.

5.5.2 PPO concentration dependence of Light Yield

The PPO concentration dependence of light yield is shown in Table 5.2, Figure 5.6. From these measurement results, the best PPO concentration is 1.50g/l.

<table>
<thead>
<tr>
<th>PPO[g/l]</th>
<th>N/n</th>
<th>Light Yield[p.e./event]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>96926/82987</td>
<td>0.155±0.001</td>
</tr>
<tr>
<td>1.77</td>
<td>96727/81988</td>
<td>0.165±0.001</td>
</tr>
<tr>
<td>1.50</td>
<td>88786/75110</td>
<td>0.167±0.01</td>
</tr>
<tr>
<td>1.25</td>
<td>95910/81611</td>
<td>0.161±0.01</td>
</tr>
<tr>
<td>1.00</td>
<td>29724/25712</td>
<td>0.145±0.02</td>
</tr>
</tbody>
</table>

Table 5.2: PPO concentration dependence of the light yield.

5.5.3 PPO concentration dependence of Decay Time

The PPO concentration dependence of decay times are shown in Table 5.3, Figure 5.7. The fitting result of the photon counter time distribution provides decay times. In general, the scintillation light may be given by a two-component exponential, fast and
Figure 5.6: PPO concentration dependence of the light yield. When PPO concentration is 1.5g/l the light yield is maximum.

slow, although the fast component dominates(C.3.1). In Table5.3, “Fast component” and “Slow component” are decay times of the fast component and slow component, respectively.

If the PPO concentration is lower, the decay time for the fast component becomes longer. On the other hand, the decay time for the slow component almost doesn’t change if the PPO concentration is longer.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>5.406 ± 0.09584</td>
<td>37.44 ± 6.667</td>
<td>90.77/46</td>
</tr>
<tr>
<td>1.77</td>
<td>5.572 ± 0.1009</td>
<td>45.58 ± 11.07</td>
<td>95.39/45</td>
</tr>
<tr>
<td>1.50</td>
<td>6.115 ± 0.1174</td>
<td>52.55 ± 16.68</td>
<td>110.1/45</td>
</tr>
<tr>
<td>1.25</td>
<td>6.499 ± 0.1111</td>
<td>48.53 ± 17.6</td>
<td>129.1/45</td>
</tr>
<tr>
<td>1.00</td>
<td>6.835 ± 0.06039</td>
<td>31.75 ± 3.468</td>
<td>98.2/45</td>
</tr>
</tbody>
</table>

Table 5.3: PPO concentration dependence of decay times.
Figure 5.7: PPO concentration dependence of decay time. For fast component, the decay time is longer as PPO concentration become small. On the other hand, PPO concentration dependence is hardly ever seen for the slow component.
5.6 Energy(dE/dX) Calibration

Because we need to know the absolute light yield on a certain energy, the energy calibration for the monitor PMT is very important. The light-output of the liquid scintillator is proportional to the energy, and the ADC charge of the energy monitor is proportional to the light output. If we know the ADC charge which corresponds to one energy, we can know the energy μ deposits at the apparatus event by event.

We used 137Cs(γ-ray 662keV) and measured the the ADC charge of energy monitor which corresponds to the compton scattered electron energy. The energy of the electron which is scattered to the fixed angle is constant.3 If the direction of the scattered γ-ray to the input γ-ray is 180°(Back Scatter), the scattered electron kinematic energy is 478keV(\because function(D.12)).

The Setup for Energy calibration is shown in Figure5.8. The event trigger is created by the coincidence of the scattered electron(energy monitor) and back scattered (γ(NaI scintillation counter). Figure5.9 show the ADC charge histogram of the energy monitor when the distance between energy monitor PMT and 137Cs is short(~13cm). The charge at the peak corresponds to the scattered electron energy, 478keV. The left hand side of the peak is the backgrounds which comes from the accidental coincidence.

Figure5.10 shows the results when the distance between energy monitor PMT and 137Cs or muon trigger is 25cm. The peak charge which corresponds to 478keV is 17.8 ± 0.4pC, and the peak charge by cosmic ray muon is 867.5 ± 6.8pC. Assume the zenith angle distribution of the cosmic ray muon is $\cos^2 \theta$, muon path which corresponds to the peak is 14cm. From these result, the energy which corresponds to the peak charge is 23.2 ± 0.6MeV(muong path = 14cm). For the photon counter, the effective diameter of the Aluminum tube is 11cm because the internal diameter of the ring is 11cm. Therefor, the energy which corresponds to the peak charge is 18.2 ± 0.5MeV for the photon counter. If $\text{d}E_\mu/\text{d}X \sim 2$MeV-cm2-g$^{-1}$, the muon deposit energy is expected to be ~18MeV(muong path = 11cm). This is the consistent with the measurement result.

3See AppendixD
Figure 5.8: Setup for energy calibration. The energy monitor detects the scintillation light which derived from the scatter electron, and NaI counter detects the back-scattered gamma-ray. The event trigger is created from the coincidence of these two signal.

Figure 5.9: ADC charge of the energy monitor when the distance between the energy monitor and ^{137}Cs is about 13cm. The peack is denotes the 478keV.
Figure 5.10: Total charges of the energy monitor when the distance between this monitor and 137Cs, trigger counter is 25cm.
5.7 Discussion

From the results of the light yield and the energy calibration, the light yield of KamLAND detector can be estimated using following parameters.

- Number of PMT = 1,295(17”PMT), 580(20”PMT)
- Transparency of Balloon = 94% @360nm
- Transparency of Acryl which used in the long scintillator system = 85% @360nm
- 17”PMT light collection efficiency 85%
- 5”PMT collection efficiency 64%

The estimated light yield of KamLAND(@center) is ~ 190 p.e./MeV(Th.=1/4p.e.). This is corresponding to

$$\frac{\delta E}{E} = \frac{7}{\sqrt{E(\text{MeV})}} \% \quad (@\text{center})$$

The actual number of p.e. is expected to be higher than this number because that this measurement is insensitive to the light re-scattering and that higher p.e. number is expected for the peripheral events than central events.

5.8 Summary

The light yield were measured using the long apparatus(~KamLAND scintillator vessel). From the measurement results, the normal-paraffin(N12) turned out to be better than iso-paraffin(P250), and the best concentration of PPO is 1.5g/l. Moreover, using the energy calibration and a several parameters, the light yield of KamLAND(@center) is estimated to be 190 p.e./MeV(Th.=1/4p.e.).
Chapter 6

Summary

KamLAND is the very large-size detector to observe low energy anti-neutrino and neutrino. Volume of liquid scintillator which is one of the main component in the detector is $1,300\text{m}^3$, and radius of the scintillator vessel is 6.5m. Almost all $\bar{\nu}_e$ come from nuclear reactors and terrestrial, and their visible energy are above 1MeV. On the other hand, many ν_e come from the Sun, and the energy of the solar neutrino, especially ^7Be neutrino, is 862keV. In order to study on various physics through the detection of these neutrino, several features are required for the scintillator.

- Light Yield $\geq 100\text{ p.e./MeV} (\delta E/E = 10\%/\sqrt{E(\text{MeV})})$
- MissID(α, fast neutron $\leftrightarrow \beta, \gamma$) $\leq 10\%$
- High Flash Point($>60\text{°C}$) for safety
- Very low contamination of natural radioactivities

Low energy threshold give high statistics of the solar neutrino, and the lower limit is decided by contamination of $^{14}\text{C}(Q_{\beta} = 157\text{ keV}) \beta$-decay. This contamination can be suppressed by the high energy resolution, and the energy resolution is depends on the light yield(number of detected photon). When the light yield 100 p.e./MeV, the lower limit of the threshold will be 280 keV. Low background condition is also important feature, and Pulse Shape Discrimination(PSD) is effective technique for the background suppression. MissID is the probability to recognize α or fast neutron events as β or γ events.

Generally, the liquid scintillator consists of solvents, primary solute and wavelength shifter(secondary solute). We selected Pseudocumen(1,2,4-Trimethyl Benzene) as a solvent, PPO as a primary solute and BisMSB as a wavelength shifter because many experiments have used. The light yield depends on the light output, light transparency,
surface coverage of PMTs and light sensitivity of PMT. KamLAND scintillator is diluted with the paraffin oil because the light transparency is the most important at the large size detector. The transparency of the paraffin oil is very good and its flash point (83°C) is much higher than that of pseudocumen (54°C). Therefore, the dilution, paraffin-oil/pseudocumen > 70%/30%, also give the high flash point (> 60°C).

MissID (fast neutron ↔ γ) and light output measurements gave the concentration of pseudocumen and PPO. And these measurements results are no difference within 1% when BisMSB is added 0.1g/l in the scintillator. Here, the composition of the scintillator is squeezed;

\[
\text{Paraffin-oil(80%) + P.C.(20%) + PPO(1~2g/l)}
\]

\text{or}

\[
\text{Paraffin-oil(80%) + P.C.(20%) + PPO(1~2g/l) + BisMSB(0.1g/l)}
\]

We measured light attenuation lengths of above two scintillator (PPO=2g/l), and calculated light yield using various parameters, attenuation-lengths, light-output, surface coverage of PMTs, light sensitivity of PMT and transparency of the scintillator vessel (Chapter 4). Calculated light yields are almost same (average 180~200p.e./MeV), and there is also no difference adding BisMSB. Therefore, we decide that BisMSB or other wavelength shifter is unnecessary because of cost and no merit.

Additionally, we measured the light yield directly, for more detail study (Chapter 5). We studied about paraffin oil types and PPO concentration.

- Paraffin oil dependence
 - There are two types paraffin oil, normalparaffin (N12) and isoparaffin (P250) as base liquid. N12-base scintillator is better (27%) than the P250-base one.

- PPO concentration (1-2g/l) dependence
 - The best concentration of PPO is 1.5g/l.

These studies gave the best components and concentration of the scintillator for KamLAND.

\[
\text{Normalparaffin(N12) + Pseudocumen + PPO} \quad 80\% \quad 20\% \quad 1.5\text{g/l}
\]

Moreover, the light yield of KamLAND (@center) is estimated about 190p.e./MeV (Th. = 1/4p.e.) using some parameters, the surface coverage of PMTs, transparencies of the scintillator vessel, collection efficiency of PMTs. This value corresponds to the energy
When the light yield is 190 p.e./MeV, we can below the trigger threshold to about 240keV. Additionally, background rate from 14C will be much lower (1/460) than that at 100 p.e./MeV of light yield when energy threshold is 280 keV.

In summary, we develop the scintillator for KamLAND experiment based on the various measurements results. The composition of the scintillator and this features summarized in Table 6.1.

<table>
<thead>
<tr>
<th>Normalparaffin(N12) + Pseudocumene + PPO</th>
<th>80%</th>
<th>20%</th>
<th>1.5g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>light yield</td>
<td>190 p.e./MeV @ central event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>light output</td>
<td>49% Anthracene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>attenuation length</td>
<td>10 m @ 400 nm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flash point</td>
<td>64°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>density</td>
<td>0.78 g/cm³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>refractive index</td>
<td>1.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1: The composition and features of KamLAND scintillator.
Appendix A

Neutrino Oscillation

A.1 Vacuum Oscillation

If neutrinos have the mass, the theory up to the present have to be modified. For massive neutrinos, the flavor eigenstates, ν_e, ν_μ, ν_τ, are not the same as the mass eigenstates, ν_1, ν_2, ν_3, and its relation is written by the mixing matrix which is the same matrix as the CKM matrix for quarks.

$$|\nu_\alpha\rangle = U_{\alpha j}|\nu_j\rangle \quad (\alpha = e, \mu, \tau; \ j = 1, 2, 3) \quad (A.1)$$

From this relation, it is possible that one neutrino(ν_α) converts to another flavor(ν_β). This phenomenon is called neutrino oscillation. Time evolution of states obey the Shrödinger equation,

$$i\frac{d}{dt}|\nu_j\rangle = E_j|\nu_j\rangle \quad (A.2)$$

here E_j is the energy of ν_j, and the wave function can be written as

$$|\nu_j(t)\rangle = e^{-iE_j t}|\nu_j(0)\rangle. \quad (A.3)$$

For flavor eigenstates, using Eq.A.1 and Eq.A.2, A.3,

$$i\frac{d}{dt}|\nu_\alpha\rangle = U_{\alpha j}E_jU_{j\alpha}^\dagger|\nu_\alpha\rangle \quad (A.4)$$

$$|\nu_\alpha(t)\rangle = U_{\alpha j}e^{-iE_j t}U_{j\alpha}^\dagger|\nu_\alpha(0)\rangle. \quad (A.5)$$

If ν_α is produced at $t = 0$, the probability of detecting this neutrino at $t = t$ is

$$P(\nu_\alpha \rightarrow \nu_\beta) = |\langle \nu_\alpha(t)|\nu_\alpha(0)\rangle|^2 \quad (A.6)$$

$$= \left|\langle \nu_\alpha(t)|\nu_\alpha(0)\rangle \right|^2 \quad (A.7)$$
To simplify the problem, we consider only two flavors,

\[
U = \begin{pmatrix}
\cos \theta_V & \sin \theta_V \\
-\sin \theta_V & \cos \theta_V
\end{pmatrix}
\]

(A.8)

here \(\theta_V \) is the mixing angle in vacuum between \(\nu_e \) and \(\nu_x \). Flavor eigenstates are expressed as

\[
|\nu_e\rangle = |\nu_1\rangle \cos \theta_V + |\nu_2\rangle \sin \theta_V
\]

(A.9)

\[
|\nu_x\rangle = -|\nu_1\rangle \sin \theta_V + |\nu_2\rangle \cos \theta_V
\]

(A.10)

When time is \(t \),

\[
|\nu_e(t)\rangle = \cos \theta_V e^{-iE_1 t} |\nu_1\rangle + \sin \theta_V e^{-iE_2 t} |\nu_2\rangle
\]

(A.11)

The mass of \(\nu_1, \nu_2 \) are \(m_1, m_2 \), respectively. The energy is

\[
E_i = \sqrt{p^2 + m_i^2}
\]

(A.12)

Therefore, the probability of \(\nu_e \rightarrow \nu_e \) is

\[
P_{\nu_e \rightarrow \nu_e}(t) = 1 - \sin^2 2\theta_V \sin^2 \left(\frac{\Delta m^2 t}{4p} \right)
\]

(A.13)

\[
= 1 - \sin^2 2\theta_V \sin^2 \left(\frac{1.27\Delta m^2 [eV^2]l[\text{m}]}{4E[\text{MeV}]} \right)
\]

(A.14)

\[
= 1 - \sin^2 2\theta_V \sin^2 \left(\frac{\pi l}{L_V} \right)
\]

(A.15)

here \(\Delta m^2 \) is the mass square difference between \(\nu_1 \) and \(\nu_2 (\Delta m^2 = |m_2^2 - m_1^2|) \), \(l \) is the propagation length in the time interval of \(t \), and \(L_V \) is the oscillation length in vacuum which is defined as

\[
L_V \equiv \frac{4\pi E}{\Delta m^2}
\]

(A.16)

For \(\bar{\nu}_e \rightarrow \bar{\nu}_e \), these can be written similar expression.

From above equations, it is clear that \(P_{\nu_e \rightarrow \nu_e}(t) < 1 \), so the number of observed \(\nu_e(\bar{\nu}_e) \) events are less than that of generated \(\nu_e(\bar{\nu}_e) \) events if \(\nu_e(\bar{\nu}_e) \) and \(\nu_x(\bar{\nu}_x) \) have finite different masses and there is a non-zero mixing angle between them.
On the other hand, the Schrödinger equation for two generation is

\[
\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} = U \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix} U^\dagger \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} \tag{A.17}
\]

\[
= \left[\frac{E_1 + E_2}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{E_2 - E_1}{2} \begin{pmatrix} -\cos 2\theta_V & \sin 2\theta_V \\ \sin 2\theta_V & \cos 2\theta_V \end{pmatrix} \right] \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} \tag{A.18}
\]

\[
= \left[\frac{E_1 + E_2}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{\pi}{L_V} \begin{pmatrix} -\cos 2\theta_V & \sin 2\theta_V \\ \sin 2\theta_V & \cos 2\theta_V \end{pmatrix} \right] \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} \tag{A.19}
\]

\[
\equiv \left(\hat{H}_0 + \hat{H}_V \right) \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} \tag{A.20}
\]

Here \(\hat{H}_V \) is

\[
\hat{H}_V \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} \equiv \frac{\pi}{L_V} \begin{pmatrix} -\cos 2\theta_V & \sin 2\theta_V \\ \sin 2\theta_V & \cos 2\theta_V \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} \tag{A.21}
\]

This Hamiltonian \(\hat{H}_V \) is derived from the Vacuum Oscillation.

A.2 Neutrino Oscillation in the Matter (MSW Effect)

A.2.1 General Equations of the MSW Effect

Neutrino oscillations in matter was first proposed by S.P. Mikheyev and A.Yu. Smirnov based on the theory advocated by L. Wolfenstein. Therefore, that is often called the MSW effect.

When neutrino propagate through the matter, ν_e and ν_μ (or ν_τ) feel different potentials because ν_e scatters off electrons via both neutral and charged currents, whereas ν_μ (ν_τ) scatters only via the neutral current (Figure A.1). The electron neutrino receives an extra contribution of $\sqrt{2}G_F n_e$ which derived from the charged current interaction, here n_e is the electron number density in the matter.

From these effective potentials, the hamiltonian in the matter (\hat{H}_M) is written as

$$
\hat{H}_M \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} = \left(\hat{H}_0 + \hat{H}_V + \hat{H}_e + \hat{H}_{\mu,\tau} \right) \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix}
$$

(A.22)

$$
= \alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix}
$$

(A.23)

$$
= \frac{\pi}{\nu_V} \left(\frac{L_V}{\nu} \frac{G_F n_e}{\sqrt{2}} - \cos 2\theta_V \sin 2\theta_V \right) \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} + \frac{\pi}{\nu_V} \frac{L_V}{\nu} \frac{G_F n_e}{\sqrt{2}} + \cos 2\theta_V \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix}
$$

(A.24)

$$
\equiv \alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix}
$$

(A.25)

$$
= \frac{\pi}{\nu_V} \left(\frac{L_V}{\nu} \frac{G_F n_e}{\sqrt{2}} - \cos 2\theta_V \sin 2\theta_V \right) \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix} + \frac{\pi}{\nu_V} \frac{L_V}{\nu} \frac{G_F n_e}{\sqrt{2}} + \cos 2\theta_V \begin{pmatrix} \nu_e \\ \nu_x \end{pmatrix},
$$

(A.26)
here the first term is a common phase\(^1\), and \(L_e\) is the neutrino-electron interaction length which is defined as
\[
L_e = \frac{\sqrt{2}\pi}{G_F n_e}
\] (A.27)

Now, we define that the oscillation length and the mixing angle in matter are \(L_M\) and \(\theta_M\), respectively.

\[
\frac{\pi}{L_M} \begin{pmatrix} -\cos 2\theta_M & \sin 2\theta_M \\ \sin 2\theta_M & \cos 2\theta_M \end{pmatrix} \equiv \frac{\pi}{L_V} \begin{pmatrix} \frac{L_V}{L_e} - \cos 2\theta_V & \sin 2\theta_V \\ \sin 2\theta_V & -\frac{L_V}{L_e} + \cos 2\theta_V \end{pmatrix}
\] (A.28)

From \(|\text{left side}| = |\text{right side}|\) at the above equation, \(L_M\), and \(\sin^2 2\theta_M\) are written as
\[
L_M \equiv \frac{L_V}{\sqrt{\sin^2 2\theta_V + \left(\frac{L_V}{L_e} - \cos 2\theta_V\right)^2}}
\] (A.29)

\[
\sin^2 2\theta_M \equiv \frac{\sin^2 \theta_V}{\sin^2 2\theta_V + \left(\frac{L_V}{L_e} - \cos 2\theta_V\right)^2}
\] (A.30)

From the above equations, we can know that the mixing angle in the matter, \(\theta_M\), is larger as the electron number density, \(n_e\), is larger (Table A.1). Here, \(n_e^{\text{resonance}}\) is called “MSW Resonance Density”, and the oscillation is maximum (“Resonance Condition”) at that density.

\[
\frac{L_V}{L_e} = \cos 2\theta_V
\] (A.31)

\[
n_e^{\text{resonance}} = \frac{\Delta m^2}{2\sqrt{2}G_F E} \cos 2\theta_V
\] (A.32)

| \(n_e\) | 0 | \(\cdots\) | \(n_e^{\text{resonance}}\) | \(\cdots\) | \(\infty\) |
| --- | --- | --- | --- | --- |
| \(\theta_M\) | \(\theta_V\) | \(\cdots\) | \(\pi/4\) | \(\cdots\) | \(\pi/2\) |

Table A.1: The relation between the electron density and the mixing angle in the matter.

A.2.2 Neutrino Oscillation in the Sun

The flavor eigenstates in the matter are written as
\[
|\nu_e\rangle = \cos \theta_M |\nu_1\rangle + \sin \theta_M |\nu_2\rangle
\] (A.33)

\[
|\nu_x\rangle = -\sin \theta_M |\nu_1\rangle + \cos \theta_M |\nu_2\rangle
\] (A.34)

\(^1\)A common phase can be omitted when we consider about the neutrino oscillation, because it doesn’t influence on the oscillation.
Figure A.2: The definition of the resonance condition and resonance density.

Figure A.3: As the electron density decreases slowly, the flavor eigenstate remains close to the mass eigenstate $|\nu_2\rangle$. Upon emerging from the Sun to an essentially vacuum environment, the original $|\nu_e\rangle$ is close to the vacuum flavor eigenstate $|\nu_x\rangle$.

The neutrino flavor which is created in the Sun is the electron neutrino, and the electron density at the center of the Sun is very high, $n_e \sim \infty \Rightarrow \theta_M \sim \pi/2$. Therefore, the neutrino which is created in the Sun is almost ν_2, and the flavor eigenstates of the solar neutrinos are written as

$$|\nu_e\rangle = \sin \theta_M |\nu_2\rangle$$

(A.35)

$$|\nu_x\rangle = \cos \theta_M |\nu_2\rangle$$

(A.36)

In the end, a part of the electron neutrinos which are created at the center of the Sun($n_e \sim \infty$) changes another flavor while it goes out from the Sun($n_e : \infty \rightarrow 0$).
Figure A.3 illustrates how a solar neutrino beam can change completely its flavor when the electron density varies slowly.

A.2.3 Regeneration in the Earth

Electron neutrinos which are converted to ν_x while passing through the Sun may be reconverted to ν_e on their way to a neutrino detector on the opposite side of the Earth from the Sun. If the MSW explanation is correct, electron neutrinos created in the Sun have had their flavor changed by matter interactions. Therefore, regeneration in the Earth will on the average produce more ν_e from ν_x rather than vice versa and may make the Sun appear to shine brighter in electron neutrinos at night (Day-Night effect).
Appendix B

Decay Chain of ^{238}U and ^{232}Th

![Decay Chain Diagram]

Figure B.1: Decay Tables of ^{238}U
Figure B.2: Decay Tables of 232Th.
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Energy (keV)</th>
<th>BR (%)</th>
<th>Isotope</th>
<th>Energy (keV)</th>
<th>BR (%)</th>
<th>Isotope</th>
<th>Energy (keV)</th>
<th>BR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>238U</td>
<td>226Ra</td>
<td>214Bi</td>
<td>234Th</td>
<td>222Rn</td>
<td>214Po</td>
<td>234Pa</td>
<td>214Po</td>
<td>210Tl</td>
</tr>
<tr>
<td>238U</td>
<td>234Th</td>
<td>234Pa</td>
<td>234U</td>
<td>230Th</td>
<td>210Bi</td>
<td>210Pb</td>
<td>210Bi</td>
<td>210Po</td>
</tr>
<tr>
<td>234Pa</td>
<td>214Bi</td>
<td>214Po</td>
<td>234U</td>
<td>230Th</td>
<td>210Pb</td>
<td>210Bi</td>
<td>210Pb</td>
<td>210Po</td>
</tr>
<tr>
<td>Isotope</td>
<td>Energy (keV)</td>
<td>BR (%)</td>
<td>Isotope</td>
<td>Energy (keV)</td>
<td>BR (%)</td>
<td>Isotope</td>
<td>Energy (keV)</td>
<td>BR (%)</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>232Th</td>
<td>E_α</td>
<td>4018</td>
<td>22.1</td>
<td>E_γ</td>
<td>4083</td>
<td>77.9</td>
<td>E_γ</td>
<td>64</td>
</tr>
<tr>
<td>(1.405 x 1010y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228Ac</td>
<td>E_γ</td>
<td>58</td>
<td>74.1</td>
<td>E_γ</td>
<td>99</td>
<td>3.71</td>
<td>E_γ</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>209</td>
<td>4.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Pb</td>
<td>E_β</td>
<td>158</td>
<td>5.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10.64h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228Ra</td>
<td>E_β</td>
<td>239</td>
<td>82.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5.75y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>300</td>
<td>4.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>333</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Bi</td>
<td>E_α</td>
<td>6167</td>
<td>25.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(60.55m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228Ac</td>
<td>E_β</td>
<td>6207</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.15h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>463</td>
<td>2.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>795</td>
<td>4.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>836</td>
<td>1.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>911</td>
<td>24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>965</td>
<td>4.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>969</td>
<td>4.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>1631</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>5436</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Po</td>
<td>E_α</td>
<td>8954</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(299ns)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>5520</td>
<td>71.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>1040</td>
<td>3.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>1292</td>
<td>24.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224Ra</td>
<td>E_α</td>
<td>5548</td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3.66d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>5789</td>
<td>94.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>277</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>241</td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_γ</td>
<td>511</td>
<td>8.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220Rn</td>
<td>E_α</td>
<td>583</td>
<td>30.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(55.6s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_α</td>
<td>6405</td>
<td>99.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216Po</td>
<td>E_α</td>
<td>861</td>
<td>5.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.145s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_α</td>
<td>2616</td>
<td>35.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E_α</td>
<td>6907</td>
<td>99.9981</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B.2: Decay chain of 232Th
Appendix C

General Arguments of Liquid Scintillator

C.1 General Characteristics of the Scintillator

When radiation passes through the scintillator, it excites the atoms and molecules making up the scintillator causing light to be emitted. This light is detected by the PMT and so on, and converted to the electrical current signal. We get the physical information through the analysis of that signal.

In general, the scintillator signal is capable of providing a variety of information. Among its most outstanding features are:

1. **Sensitivity to Energy**
 Above a certain minimum energy, most scintillators behave in a near linear fashion with respect to the energy deposited, i.e., the light output of a scintillator is directly proportional to the exciting energy. If we use the detector whose electrical signal is proportional to this light (for example PMT), it makes the scintillator suitable as an energy spectrometer.

2. **Fast Time Response**
 Scintillation detectors are fast instruments in the sense that their response and recovery times are short relative to other types of detectors. This faster response allows timing information to be obtained with greater precision, for example, the time difference between two events. This and its fast recovery time also allow scintillation detectors to accept higher count rates since the dead time, i.e., the time that is lost while waiting for the scintillator to recover, is reduced.

3. **Pulse Shape Discrimination (PSD)** (Details in C.3.4)
With certain scintillators, it is possible to distinguish between different types of particles by analyzing the shape of the emitted light pulses. This is due to the excitation for different fluorescence mechanisms by particles of different ionizing power. This technique is known as **Pulse-Shape Discrimination (PSD)**.

C.2 Structure of the Liquid Scintillator

The liquid scintillator is consists of a few solvent and a few solute. The liquid scintillator is the organic liquid that the solute is dissolved in the solvent. The ionization energy seems to be absorbed mainly by the solvent and then passed on to the solute. This transfer usually occurs very quickly and efficiently.

- **Solvent**
 The solvent is the organic liquid, for example benzene, toluene, pseudocumene and so on. These liquids absorb radiation energy and then pass on to the phosphor(solute), so that the requirements for the good solvent are **high efficiency of the energy transition, not attenuate the scintillation light** and so on. Many solvents not only transit the energy to the solute but also emits the light from themselves, although it is very weak in comparison with that from the solute.

- **Solute (Phosphor)**
 Solute is the powdered phosphor, luminescence powder, for example PPO, PMP and so on. These materials which dissolved in the solvent convert the passed energy from the solvent to the light. Generally, the density of the solute is g/l order, and there are proper concentration for each solutes because of self-absorption (C.4).

- **Wavelength Shifter (Secondary solute)**
 The wavelength shifter absorbs the light which emitted by the above solute (primary solute) and emits the light whose wavelength is more longer than that from the primary solute. This solute is used if the light detector efficiency is not suitable for the wavelength region of the primary solute’s emission. For example, Bis-MSB, POPOP etc. are well known wavelength shifter. These solute are called secondary solute against to the above primary solute.

The liquid scintillator is well known and used from long ago. But, the precise details of the energy transfer mechanism are still not clear, although there are a few models (references [18, 31, 33]).
C.3 Light Output Response

C.3.1 Time Response

When exposed to certain forms of energy, for example, light, heat, radiation and so on, the scintillator absorb and re-emit the energy in the form of visible light. If the reemission occurs immediately after absorption or more precisely within 10nsec., the process is usually called fluorescence. However, if reemission is delayed because the excited state metastable, the process is called phosphorescence or afterglow.

As a first approximation, the time evolution of the reemission process may be described as a simple exponential decay(Figure C.1).

\[N = \frac{N_0}{\tau_d} \exp \left(\frac{-t}{\tau_d} \right), \]

(C.1)

here \(N \) is the number of photons which emitted at time \(t \), \(N_0 \) is the total number of photons between \(t=0 \) to \(t=\infty \), and \(\tau_d \) the decay constant. The finite rise time from zero to the maximum in most materials is usually much more rapid than the decay time and has been taken as zero here for simplicity.

While this simple representation is adequate for most purposes, the real phenomenon is a more complex. A more accurate description, may be given by a two-component exponential

\[N = A \exp \left(\frac{-t}{\tau_f} \right) + B \exp \left(\frac{-t}{\tau_s} \right), \]

(C.2)

where \(\tau_s \) and \(\tau_f \) are the decay constants, \(\tau_f < \tau_s \). For most scintillators, one component is generally much faster than the other so that it has become customary to refer to them as the fast and slow components, or the prompt and delayed components. Their relative magnitudes, \(A \) and \(B \), vary from material to material, although it is the fast component which generally dominates(Figure C.1).

C.3.2 Response for Radiation

The light output of a scintillator refers more specifically to its efficiency for converting ionization energy to light. This is an extremely important quantity, as it determines the efficiency and resolution of the scintillator. In general the light output is different for different types of particles at the same energy(ionization quenching, C.4). Moreover, for a given particle type, it does not always vary linearly with energy. The efficiency that an average energy loss required for the creation of a photon decreases for heavier particles.
Figure C.1: Scintillation light is resolved into fast (prompt) and slow (delayed) components. The solid line represents the total light decay curve.

C.3.3 Linearity

The fluorescent light emitted, L, is directly proportional to the energy, E, deposited by the ionizing particle,

$$L \propto E.$$ \hspace{1cm} (C.3)

Strictly speaking, this linear relation is not true, although for many applications it can be considered as a good approximation. In reality, the response of scintillators is a complex function of not only energy but the type of particle and its specific ionization. For example, in liquid scintillator, non-linearities are readily observed for electrons at energies below 125keV, although they are small.

C.3.4 Pulse Shape Discrimination (PSD)

In C.3.1, we mentioned that the emitted light has fast component and slow component. In general, both of these components depend on dE/dx to some degree or another. Therefore, the overall decay time of the emitted light pulse will vary with the type of exciting radiation. The scintillator is capable of distinguishing between different types of incident particle by the shape of the emitted light pulse (Pulse Shape Discrimination).

The explanation for this effect lies in the fact that the fast and slow components arise from the de-excitation of different states of the scintillator. Depending on dE/dx, these states are populated in different proportion, so that the relative intensities of
the two components are different for different \(dE/dx \). A high \(dE/dx \) produces a high density of excited molecules which results in increased intermolecular interactions, so that de-excitation is high. In other words, the proportion of the fast component emitted relative to the slow component is reduced if \(dE/dx \) is high. In general, \(dE/dx \) of the heavy particle is higher than that of the light particle, so that the heavier particle has the smaller proportion of the fast component relative to slow component (Figure C.2).

![Graph showing the shape of the emitted light pulse]

Figure C.2: The shape of the emitted light pulse is different if incident particle is different.

C.3.5 Temperature Dependence

The light output of most scintillators is also a function of the temperature. This dependence is generally weak at room temperatures, but should be considered if operation at temperatures very different from normal is desired. For example, in organic scintillators, the light output is practically independent of temperature between -60°C and +20°C and only drops to 95% of this value at +60°C.
C.4 Quenching

Quenching is the most important consideration when we use the scintillator. Quenching is the energy loss in the energy transition process, so that light output of scintillator is decrease. High energy physicists have to pay attention to next lines.

1. Ionization Quenching
 When a particle whose dE/dx is high pass through in the scintillator, the de-excitation of scintillator is higher than that when the other particle whose dE/dx is small pass through. In other words, the light output efficiency is different for different types of particles because their dE/dx is different.

2. Oxygen Quenching
 Dissolved oxygen in the liquid scintillator cause the quenching. The light output of the scintillator is rise if we can exclude oxygen in the scintillator. Nitrogen bubbling is the most useful method to exclude oxygen.

3. Absorption of light (Color Quenching)
 If there are materials whose absorption spectrum overlaps emission spectrum of the scintillator, the emission light is absorbed by these materials, so that detected light is decreased.

4. Self-absorption
 In all scintillator, a part of the absorption spectrum overlaps emission spectrum, so that the scintillator absorbs the light which it emitted (self-absorption) and emits the light again (Figure C.3). The effect of self-absorption is higher, the time and space resolution of the scintillation detector is worse.

5. Detector Efficiency
 If the overlap region of the quantum efficiency of the detector to the emission spectrum of the scintillator is poor, detected light is very poor. We must use the suitable detector for the scintillator. For example, PMT quantum efficiency spectrum is shown in Figure C.4.
Figure C.3: Emission & Absorption spectrum of PMP(solute).

Figure C.4: Quantum Efficiency of PMT
Appendix D

Compton Scattering

The calculation of the electron kinematic energy on Compton scattering.

From momentum conservation,

\[E_\gamma = E'_\gamma \cos \phi + P_e \cos \theta \] \hspace{1cm} (D.1)

\[0 = P_e \sin \theta - E_\gamma \sin \phi \] \hspace{1cm} (D.2)

\[(\therefore E_\gamma = P_\gamma \leftarrow m_\gamma = 0) \] \hspace{1cm} (D.3)

Use above two equations,

\[P_e^2 = (E_\gamma - E'_\gamma \cos \phi)^2 + (E_\gamma \sin \phi)^2 \] \hspace{1cm} (D.4)

\[= E_\gamma^2 + E'_\gamma^2 - 2E_\gamma E'_\gamma \cos \phi \] \hspace{1cm} (D.5)

From Energy Conservation,

\[E_\gamma + m_e = E'_\gamma + E_e \quad (E_e = \sqrt{m_e^2 + P_e^2}) \] \hspace{1cm} (D.6)

\[\Rightarrow P_e^2 = (E_\gamma - E'_\gamma + m_e)^2 - m_e^2 \] \hspace{1cm} (D.7)

\[= (E_\gamma - E'_\gamma)^2 + m_e(E_\gamma - E'_\gamma) \] \hspace{1cm} (D.8)

From formulas (D.5) and (D.8),

\[E_\gamma^2 + E'_\gamma^2 - 2E_\gamma E'_\gamma \cos \phi = (E_\gamma - E'_\gamma)^2 + m_e(E_\gamma - E'_\gamma) \] \hspace{1cm} (D.9)

\[E_\gamma - E'_\gamma = \frac{E_\gamma E'_\gamma}{m_e} (1 - \cos \phi) \] \hspace{1cm} (D.10)

\[= \frac{2E_\gamma E'_\gamma}{m_e} \sin^2 \frac{\phi}{2} \] \hspace{1cm} (D.11)

\[\therefore T_e = \left(\frac{2E_\gamma \sin^2 \frac{\phi}{2}}{1 + \frac{2E_\gamma \sin^2 \frac{\phi}{2}}{2}} \right) E_\gamma \] \hspace{1cm} (D.12)

Here, \(T_e \) is electron kinematic energy. When \(\gamma \)-ray is back scattered(\(\phi = 180^\circ \)), \(T_e \) is maximum.
$E_e = \sqrt{m_e^2 + P_e^2}$

Figure D.1: Compton Scattering

Figure D.2: The kinematic energy of Scattered electron v.s. The angle of scattered γ-ray. Here, $E_\gamma = 662\text{keV}(^{137}\text{Cs})$
Bibliography

[21] ISHIHARA Kenji. Study of $\nu_\mu \rightarrow \nu_\tau$ and $\nu_\mu \rightarrow \nu_{\text{sterile}}$ neutrino oscillations with the atmosperic neutrino data in super-kamiokande, 1998.

