Possible reservoirs of radioactivity in the deep mantle

Ed Garnero School of Earth and Space Exploration Arizona State University

Outline

- Brief overview: motivation for investigating interiors; how seismology helps
- Large Low Shear Velocity Provinces (LLSVPs) at base of mantle: large-to-small scales
- Dynamical framework: how to build and maintain an LLSVP, and chemically sample it via plumes
- LLSVPs as reservoirs

The main feature of planetary interiors: *stratification*

Mercury

Mars

Venus

Europa

http://www.ngdc.noaa.gov/mgg/image/relief_slides1.html

To explain surface observables: many possibilities

[Alberede, Anderson, Davies, Hager, Jellinek, Kellogg, Manga, Tackley, van der Hilst, Wysession, Geo101 books...]

Internal structure and circulation play a fundamental role in the nature and evolution of many phenomena

- Plate tectonic driving force
- Plumes & resulting volcanism
- Subduction and the fate of slabs
- Plate reorganization, super-continents
- Planetary heat budget/transfer
- Core processes & magnetic field
- Earth's chemical & water cycles
- Mantle outgassing \rightarrow ocean & atmosphere chem.
- Mantle reservoirs

Studying planetary interiors

Tarbuck & Lutgens (Intro geology text)

Gravity / geoid

- Past / present magnetic field
- Chemistry of lavas, crust, etc.

Current/pact plate motione

Seismic imaging

- Geodynamic experiments
- High pressure mineral physics
- Cosmochemistry / meteoritics
 - Tectonics / geodesy
- Magnetotellurics
 - Geoneutrinos

Earth in 1-D: The Preliminary Reference Earth Model (PREM)

Nearly all seismic results are determined & presented relative to an assumed reference structure

Dziewonski and Anderson [PEPI, 1981]

Mike Thorne (Univ. Utah)

Everything we do depends on our reliance on the starting model

South Sandwich Islands Feb 28, 2009

Raw data

Distance-stacked data

Distance(deg)

earthquakes

(sources of energy)

sensors

http://www.iris.edu

Earth in 3-D: Heterogeneity from seismic tomography

DEPTH

Z=50 km

Z=1500 km

Z=2880 km

5 -4 -3 -2 -1 0 1 2 3 4 5

HETEROGENEITY

stongest

weakest

strong again

[after Ritsema and van Heijst, 2001]

Base of Earth's mantle

"Large Low Shear Velocity Provinces": LLSVPs

Model of Jeroen Ritsema

LLSVP margins

Shear velocity perturbations: δVs Z=2800 km

Shear velocity gradient: ∇(δVs) Z=2800 km

Strongest lateral gradients are at LLSVP edges

red: lowest velocities for S20RTS green: strongest lateral V_S gradients

Thorne, Garnero, Grand, PEPI., 2004

b. Ford et al. [2006]

Seismic waves that propagate near LLSVP edges are broadened, sometimes multipulsed

20

40

Zhao et al (2013 in prep)

Wave multi-pathing and broadening from refraction along heterogeneities

Courtesy of Chunpeng Zhao

Table S1. Past seismic studies that image Large Low Shear Velocity Province (LLSVP)

Study Reference	Location	Seismic Phases Used S, SKS, SKKS	
	Number		
Bréger and Romanowicz [1998]	3		
Luo et al. [2001]	2	PKP	
Ni et al. [2002]	10	S, ScS, SKS	
Ni and Helmberger [2003a]	10	S, ScS, SKS, SKKS	
Ni and Helmberger [2003b]	10	S, ScS, SKS	
Ni and Helmberger [2003c]	10	S, ScS, SKS, P, PcP	
Wang and Wen [2004]	8	S, ScS, SKS, SKKS	
Ni et al. [2005]	10	S, ScS, SKS	
To et al. [2005]	5	S, SKS, SKKS	
Ford et al. [2006]	6	S, SKS, SKKS	
He et al. [2006]	1	S, ScS	
Sun et al. [2007]	9	S, ScS, SKS, SKKS	
Sun X. et al. [2007]	4	PKP	
He and Wen [2009]	7	S, ScS, SKS, SKKS	
Sun et al. [2009]	9	S, ScS, SKS, SKKS	

margins. The Location Number corresponds to Figure 1b and 1c in the main text.

Deep mantle heterogeneity

Shear velocity perturbations: δV_S Z=2800 km

Shear velocity gradient: $\nabla(\delta Vs)$ Z=2800 km

Forward modeling studies find "edges" at LLSVP boundaries

Large low shear velocity provinces: DENSE

Dense material (red) in thermochemical convection calculation

- thermochemical convection: initially uniform dense layer at base of mantle
- surface boundary condition: 119 My past plate motions
- downwellings "sweep" dense material into piles

Dense material (red) in thermochemical convection calculation

Grand (2002, Phil. Trans. R. Soc. Lond.)

Striking agreement

Plumes from pile ridges

Numerical geodynamics

Seismic tomography

Garnero, Lay, McNamara (2007, GSA Monograph on Superplumes)

Prediction: plumes from thermochemical pile margins

Figure 5. The locations of plumes at upper mantle plotted on top of the composition field at 2800 km depth. The blue contours are plumes (T = 0.5) at 1000 km depth, and the green contours are strong plumes (T = 0.55) at 1000 km depth.

Tan, Leng, Zhong, Gurnis (2011, G³)

Observation: hotspots & reconstructed LIPs from LLSVP margins

Hotspots

Thorne, Garnero, Grand [2004, PEPI] δVs: Grand [Phil. Trans. R. Soc., 2002] Hotspots: Sleep [JGR, 1981] Also, Wen [2006, EPSL]

Large Igneous Provinces

Torsvik et al. [Nature 2010] Torsvik et al [EPSL 2008] Burke, Steinbergerb, Torsvik, Smethurst [EPSL, 2007] Steinberger & Torsvik (2012, G^3)

Thermochemical pile internal temperatures

Garnero, Lay, and McNamara. [P4 Monograph, GSA, 2007]

Ultra-Low Velocity Zone (ULVZ)

BLACK (mantle) PINK (LLSVP) RED (ULVZ)

BLUE (cold) RED (hot) BLACK (hottest)

Whole mantle convection, 3 distinct compositions (mantle, LLSVP, ULVZ), 4 billion years

McNamara et al (2010)

Key points:

large-low shear velocity provinces

- are chemically distinct
- are shaped by subduction downwellings
- may act as deep mantle chemical reservoirs
- guide plumes
- Not "hidden"…

Matt: Collision modelers tell me a dense basal layer can survive moon forming impact

LLSVP origin

- Primordial (early differentiation)
- Basal magma ocean (BMO)
- Build through time (MORB, CMB rxn products)

Christensen and Hofmann (1994)

Labrosse et al. (2007)

Subducting MORB

figure 1

Li and McNamara (2013x)

Key point:

MORB does not likely form piles, but small amounts can go in, mix, & even come back out in plumes

- Material can accumulate beneath plume roots, then become entrained into pile.
- May be a source of observed LLSVP heterogeneity.
- But most MORB is entrained in mantle circulation currents.

Li and McNamara (2012, in prep)

Hotspots & ³He/⁴He ratios

Courtesy Curtis Williams / Allen McNamara

Background material

Pile material

Surface

CMB

Courtesy Curtis Williams / Allen McNamara

Courtesy Curtis Williams / Allen McNamara

Some vocabulary review

D["] depth shell: lowest 200-300 km of mantle

- LLSVP name for the distribution of ~deg 2 low shear velocity in lowest 100's km of mantle
- **Pile** geodynamically inspired *interpretation* of LLSVP. Dense. Stable. Usually primordial in calculations. Sometimes "thermochemical pile"

Superplume An **interpretation** of an LLSVP. Sort of slang (term used without any intention of the consequences of such a model)

If thermochemical piles leave the CMB in superplume events, geodynamic predictions suggest it will be mixed into the mantle over time (i.e., and not settle back at CMB)

Implication: today's large thermochemical piles: **not superplume** *Implication*: today's piles are long-lived (regardless of origin)

Geochemists:

- Primitive
- Primordial
- Recycled
- BSE
- Isotopic ratio key

Geologically significant antineutrino- and heat-producing radioactive $\frac{\text{decays and decay chains}^{[10]}}{\substack{238 \text{U} \\ 92} \text{U}} \longrightarrow \begin{array}{c} 206 \text{Pb} + 8\alpha + 6e^- + 6\bar{\nu}_e + 51.698 \text{ MeV} \\ 235 \text{U} \\ 92 \text{U} \end{array} \longrightarrow \begin{array}{c} 207 \text{Pb} + 7\alpha + 4e^- + 4\bar{\nu}_e + 46.402 \text{ MeV} \\ 208 \text{Pb} \end{array}$

$^{232}_{90}{ m Th}$	\rightarrow	$^{208}_{82}\text{Pb} + 6\alpha + 4e^{-} + 4\bar{\nu}_e + 42.652\text{MeV}$
$^{40}_{19}{ m K}$	$\xrightarrow{89.3\%}$	$_{20}^{40}$ Ca + $e^- + \bar{\nu}_e + 1.311$ MeV
$^{40}_{19}{ m K} + e^{-}$	$\stackrel{10.7 \%}{\longrightarrow}$	$^{40}_{18}{ m Ar} + u_e + 1.505 { m MeV}$

Dye, S. T. (2012). "Geoneutrinos and the radioactive power of the Earth". Rev. Geophys. 50 (3).

Ocean island basalts should show more evidence for radiogenic isotopes than mid-ocean ridges

outer core

Tomographically derived LLSVPs (red)

core

Caribbean anomaly

Pacific anomaly African anomaly

mantle

Chemically distinct, dense, long-lived, shaped by subduction-related downwelling, guide plumes.

South pole

Long-lived reservoirs of radiogenic materials?

Acknowledgements:

Chunpeng Zhao

Allen McNamara

Mingming Li

EXTRA

Thermochemical pile temporal evolution

deg 2 \rightarrow deg 1 associated with super continent construction/break up cycles?

Li & Zhong (EPSL, 2009)

If S waves graze a low velocity thermochemical pile, what do we expect?

Temperature field for thermochemical piles

Shear velocity heterogeneity from seismic tomography

McNamara & Zhong [Nature, 2005]

Ritsema [Sci. Tech, 2000]

Garnero, Kennett, Loper [PEPI, 2005]

http://garnero.asu.edu