The Cosmological Model: an overview and an outlook

Alan Heavens University of Edinburgh

TAUP 2007, Sendai, Japan 11/09/07

The Standard Cosmological Model

- Universe started with Big Bang
- Einstein gravity
- CDM, baryons, photons (++)
- Cosmological
 Constant
- Inflation
- adiabatic, near-gaussian fluctuations

Evidence

Universe thermalised at microwave frequencies

Cosmological Parameters and Effects

Cosmological Parameters:

- Matter density Ω_m
- Baryon density $\Omega_{\rm b}$
- Hubble parameter h (= H₀/100 km s⁻¹ Mpc⁻¹) H=d(Ina)/dt
- Cosmological constant A
- Initial amplitude σ₈ and slope n of power spectrum of fluctuations
- +... but 6 parameter model is a reasonably good fit
- Affect many observables, through
 - Geometry of Universe
 - Power spectrum of fluctuations
 - Light element abundances

Big Bang Nucleosynthesis

T ~ 1 MeV
t ~ 3 minutes

(e.g. Fields and Sarkar 2006)

Direct probes of geometry: Supernovae

Standard(isable) candles

Apparent brightness \rightarrow luminosity distance

$$D_L = (1+z)c \int_0^z \frac{dz'}{H(z')}$$

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{m} (1+z)^{3} + (1-\Omega)(1+z)^{2} + \Omega_{\Lambda} \right]$$

Supernova Hubble diagram

Evidence for acceleration/cosmological constant

Two types of Supernova 1a?

257 SNe, with Star Formation Rates and M* from SDSS/VESPA (Aubourg et al 2007, astroph)

Convincing evidence for two populations of SNe Prompt component will be dominant at high z Do both types obey the same stretch-luminosity relation? Unknown Bronder et al (2007) suggest

high- and low-z SNe same

Also good news – see SNe to higher redshift

Conclusions from Supernovae

Λ is non-zero

Riess et al 2004

Cosmic Microwave Background

CMB with WMAP satellite

CMB fluctuation spectrum

Theoretical expectation (relatively straightforward):

W. Hu

First peak tests geometry of Universe

GEOMETRY OF THE UNIVERSE

OPEN

FLAT

CLOSED

WMAP power spectrum

Large-scale structure

Anglo-Australian Telescope 2dF galaxy redshift survey, and SDSS

In linear perturbation theory, $\delta = \rho / \langle \rho \rangle$ -1 grows:

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_m \delta = 0$$

- probes H(z) as well

Galaxy power spectrum

From 2dF Galaxy Redshift Survey

Spergel et al 2007. 2dF: Percival et al 2006

Bias?

Galaxies are not necessarily where the mass is

On large scales, detailed statistical analysis shows galaxies and mass DO follow the same distribution (Verde et al 2002; Seljak et al 2005)

Baryon Acoustic Oscillations

Remnants of acoustic fluctuations

Physical scales depends on $\Omega_m h^2$ and $\Omega_b h^2$ Angular scale depends on $D_A(z)$ – angular diameter distance Radial dependence depends on dr = c dz/H(z)Powerful geometric test:

H(z) and $D_A(z)$

Baryon Acoustic Oscillations in SDSS and 2dF

Both show evidence of 'wiggles'

SDSS

2dF

Constraints on $\Omega_{ m m}$ and $\Omega_{ m b}$

□ From 2dF

Non-baryonic Dark Matter dominates

Weak lensing

- ...probes matter distribution directly
- Distorts images of distant sources by ~1%
 Simple physics

Refregier

A2218 HST

Recent weak lensing results

Lower amplitude agrees better with WMAP (better knowledge of how far away the sources are)

Benjamin et al 2007

Lyman alpha forest clustering

Small scale clustering information, at early times (z=2-4)

Matter power spectrum

From CMB, LSS, Lyα, cluster abundances and weak lensing

Cosmological Parameters

- Universe close to flat
- □ $Ω_{\Lambda} \sim 0.74$ □ $Ω_{m} \sim 0.26$ □ ...of which $Ω_{b} \sim 0.04$ □ Σm_v < 0.17eV

Beginning to probe inflation

Constraining inflationary potentials

Scalar spectral index $P(k) \propto k^n$

Cosmological Constant?

- 'Equation of state' of Dark Energy w=p/p
- □ Λ has w = -1

Affects geometry, and growth rate

Seljak et al 2006

 $W = -1.04 \pm 0.06$

Coupled neutrinos

Self-gravity alters growth of perturbations

Number of selfcoupled neutrinos

Number of freestreaming neutrinos

Friedland et al 2006

Problems with ΛCDM

There are only two problems with ΛCDM, Λ, and CDM" - Tom Shanks

Not enough small galaxies

- Simulations show many small halos
- SDSS has found some very low-mass galaxies, but not enough
- Baryon physics e.g. feedback from star formation, can blow out gas and make small halos dim

Dwarf galaxies have very few baryons

Dwarf spheroidals are heavily dark-matter dominated: only 1-10% of mass in baryons

Mass

Resolution of missing satellites is probably in heating/feedback effects

Mass loss from low-mass galaxies

SFR + Kennicutt law → Gas Mass
 More gas has been lost from low-mass galaxies:

Calura et al 2007

Dwarf galaxy profiles

□ Dark Matter dominated → good test of models
 □ CDM predicts steeper inner profiles

- **D** Warm Dark Matter? No (Ly α)
- Self-interacting Dark Matter?
- Resolution may be in bars, or triaxial halos
- Dark Matter in Milky Way is almost certainly not astrophysical objects (microlensing)

'Bullet cluster'

Hot Gas (X-ray)

Challenges MOND, TeVeS

Dark Matter (Lensing)

Markevitch et al 2002 Clowe et al 2004

Self-interacting Dark Matter?

- Spergel and Steinhardt (2000): Selfinteracting Dark Matter could remove cusps if σ/m ~ 0.05-0.5 m²/kg
- Bullet cluster → o/m < 0.12 m²/kg (Randall et al 2007)

Prospects: Weak Lensing and BAOs

Weak Lensing: Pan-STARRS

Will map 75% of the sky with weak lensing accuracy (current largest is 0.2%)

BAOs: Many in progress or planned. Wiggle-z, PAU, FastSound etc

Joint Dark Energy Mission

Recommended by NSF to be next NASA Beyond Einstein mission ADEPT, DESTINY, SNAP

□ (≥ 2 of) Supernovae, BAO, Weak Lensing

Capability of next generation surveys

Weak lensing, BAO, Supernova and CMB experiments should establish Dark Energy equation of state accurately:

w(a)=w₀+w_a(1-a)
a=scale factor
w(z) at z~0.4 may
be known very
accurately:
Error <1%</pre>

Courtesy: Tom Kitching

Testing inflation

Inflation predicts B-modes in CMB polarisation on large scales, from gravity

Beyond Einstein Gravity?

- Next generation experiments can also address qualitatively different questions:
- Is there evidence for gravity beyond Einstein's General Relativity (e.g. Braneworld Gravity)?
- Growth rate of perturbations is altered
- Weak Lensing probes this

Prospects for testing gravity

~12 o

detection

possible

DUNE could detect evidence for Braneworld gravity

Ln(Probability of favouring Beyond Einstein gravity over GR)

Neutrinos

- Should be strongly constrained by Planck
- With Ly α, σ[Σm_ν] < 0.06eV (Gratton et al 2007) Or
 0.05eV with weak lensing (Hannestad et al 2006) Or
 0.025eV with high-z clustering (Takada et al 2007)
- Strong constraints on self-coupled v

Number of selfcoupled neutrinos

Number of free-streaming neutrinos

Friedland et al 2006

Conclusions

- Standard Cosmological Model is in Good Health
- Astrophysics may deal with remaining issues
- Neutrino mass not yet cosmologically detected
- **\square** Dark Energy seems very similar to Λ
- Excellent prospects for future measurements of Dark Energy, neutrinos, and even evidence for Braneworlds and inflation