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The Indirect Evidences of GW Existence
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Now there are about 6 similar systems, and the “double
pulsar” PSR J0737-3039 is already overtaking 1913 in

precision. All agree with GR




Some Gw SOURCES

1) Coalescing Binary Systems:
NS and Black Holes
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2)Supernovae Explosions:

Explosions Rate:
Virgo Cluster (h~10-%%) ~30/year
Milky Way (h~10-2%) 1/30 years

¥

3) Periodic Sources : For rotating Neutron Stars h very
“Small” h<10-> . Very long Integration time (1 year)
increases S/N.

4) Big-Bang Cosmological BKG (CB): Since agr,,=10-*° Big-Bang
matter is mainly transparent to GW. In the Virgo bandwidth we may
observe GW emitted after 10-?4s from time zero.




The Detection of Gravitational Waves

F.A.E.Pirani in 1956 first proposed to measure Riemann
Tensor by measuring relative acceleration of two freely
falling masses. If A and B are freely falling particles, their
separation "=(x ,-xp)* satisfies the Geodesic Deviation
equation:
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Riemann Force
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The receiver is a device measuring space-time
curvature i.e. the relative acceleration of two
freely talling masses or, equivalently, their

relative displacement.




Early Detectors: Room Temperature Resonant Bars
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Weber was the /\
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Cryogenic Bar Detectors
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"~ AURIGA
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Cryogenic Bar Detectors

AURIGA (INFN LNL)

IGEC the
Resonant Bar
Detectors
network

International
Gravitational
Event
Collaboration
established 1997
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Cryogenic Bar Detectors Sensitivity, Stability& Duty Cycle
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Bar Detectors situation at Present
NIOBE (Perth) stopped operation and did not join IGEC-2

ALLEGRO (LSU) stopped operation in 2007

In 2006 INFN stopped R&D on Spherical Detectors and left
running Auriga, Nautilus and Explorer on an annual evaluation.
It is likely that at Virgo+ starting (6/2009) they will be shut down.

INFEN left open R&D on DUAL

M.Cerdonio et al. Phys. Rev. Lett. 87 031101 (2001)

DUAL is a wide band high frequency
detector with high bandwidth (5 kHz)
and reduced Back Action.

18
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The only existing Spherical
Detector in commissionig phase -
is Minigrail (G. Frossati et al.)
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INTERFEROMETRIC DETECTORS

Large L High sensitivity
Very Large Bandwidth 10-10000 Hz

Displacement sensitivity can reach ~10-1°-10-2° m, then, for
measuring AL/L.~10-* L, and L should be km long.




Interferometer Noises
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Optical Noises can not be Thermal Noise, the more
overcome with standard ITF subtle, can perhaps be
but can with QND techniques overcome bringing Mirrors

close to -273 K©°



Modern Interferometers with

Uncertainty Principle: QND Signal Readout

Ap.AN-~1
We only measure o,
the only one containing
the signal, hence we
can ignore AN.
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Virgo Diagram
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GW Detectors have a very appealing Antenna pattern

Interferometric GW Detector

Radiotelescope Antenna
Pattern Antenna Pattern
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Global network of Detectors

-Sensitivity increase

autilus -Source direction
A i [ ] [ ] [ ]

Dlore determination from time of
flight differences

-Polarizations measurement

-Test of GW Theory and
GW Physical properties

- Far Universe expansion
rate Measurement

-GW energy density in the
Universe

ot -Knowledge of Universe at
times close to Planck’s time
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Progress of TAMA 300 Sensitivity
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In 1999, TAMA is the first large ITF to start observations, in 2001 attained
the world best sensitivity and made continuous observation more than 1000

hr with the highest sensitivity. Joint observations with LIGO/GEO during
DT7-DT9

Best sensitivity : 2 =1.710"" ;- @1KHz Recycling gain of 4.5




GEO 600 m- Hannover
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GEO 600 is a Dual Recycling Interferometer
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Virgo Sensitivity, Duty Cycle and Stability
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One Vacuum Tube with LIGO
2I1TF: 4 km and 2 km

B
By
5 N
i 5 5. MIT
. Cambridge
B ~N
% o
e ~
» » .
CALTECH e
Pasadena e
By
e
1(.,7:-\7

Present LIGO Sensitivity

Strain Sensitivity for the LIGO Hanford 4km Interferometer
S5 Performance LIGO-G060051-00-Z
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le-16T- -

—— LHO 4km (2002.09.09) - SI - Inspiral Range for 1.4/1.4 Msun: 0.019 Mpe
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GW DETECTION STATUS

IGEC: Network of Bar Detectors Started in 1997 (Auriga, Explorer, Nautilus,
Allegro) for impulsive GW detection.

No evidence of a significant GW signal

LIGO-GEO600: GW from Pulsar (28 known)- € < 10-5-10-6 (no mountains > 10
cm)- Eupper limits: 2.10-24@200Hz, 5.10-2@400Hz, 10-2@1KHz
No evidence of a significant GW signal

LIGO,GEO600,TAMA: Up. lim.: Coalescing NS-NS <1 event/(gal.year) 2 <M, < 6
Coalescing BH-BH <1 event/(gal.year) 10 < M, <80
No evidence of a significant GW signal

LIGO: Stockastic BKG
“Qew () = L 2w 2,()-0 (

)a Virgo, LIGO, GEO 600:

o P d 100Hz May 18th 2007 started

T Y common data taking
& 107 and coherent

N OO o Y WO analysis; main target

L= “SaHILT N
10 ——S4 H1L1+H2L1 [

- Expected H1L1, Design Sensitivity, 1 year
= Expected H1H2, Design Sensmvnty 1 year|

impulsive events ?7??
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CLIO: The First Cryogenic Interferometer for GW Detection

Construction of CLIO

Acheved Pressure
- 100m Arm -
6X10 > Pa
b1 - & by a 800 litter Turb
A 5 » % - Cryostat -
L& 2x10°6 Pa
by Cryostat itself |
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The Future
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Virgo+

1) Cure low freq. Noise
2) Fused silica suspens
3) Increase arm finesse
4) Higher power laser
Final Decision to be
made late 2007

Advanced
Virgo

1)Larger mirror
2)Improved coatings
3)Higher laser power
4)DC readout

R&D underway
Design decisions late
2007

1013_ il Ll il iy
E ---- 50W/2 + new losses model
1 —— 50W/2 + new losses model + F=150
1N 50W/2 + current mirrors
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Advanced

Ligo
1)Active anti-seismic
system operating to
down to 10 Hz
2)Lower thermal noise
suspensions and optics
3)Higher laser power
4)More sensitive and

more flexible optical
configuration




.. Sensitivity x10 , Sky Vol. x1000
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Parameter LIGO Advanced LIGO
Input Laser Power 10 W 180 W
Mirror Mass 10 kg 40 kg

Interferometer Power-recycled Dual-recycled
Topology Fabry-Perot arm | Fabry-Perot arm
cavity Michelson | cavity Michelson
GW Readout Method | RF heterodyne DC homodyne
Optimal Strain 3x 102/ rHz Tunable, better
Sensitivity than 5 x 1024/ rHz
Seismic Isolation Jiow ~ 50 Hz Jiow ~ 10 Hz
Mirror Suspensions Single Pendulum Quadruple

pendulum




GEO 600

 Emphasize high frequencies--length less important

* Pioneer advanced techniques for other large interferometers

* Tuned signal recycling and squeezing?

Linear noise spectral density [1/ \!Hz]

=20 I T N T T T T T !
10 [ —= GEO Design, 7kW ICP ;
______________ .| — GEO HF, 70KW ICP, r_=0.88, SQZ=6dB
................................. | — GEO HF, 70kW ICP, r_=0.80, tuned, SQZ=6dB /
B R B full coating thermal noise, silica
-21 : : : £ 3 E :
1 0 \ .................................................
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LCGT: A CRYOGENIC INTERFEROMETER

Suspension Conceptual Design

j SAS: 3 stage anti-
vibration system with
inverted pendulum

Mirrors
Cooled at
20 K

SPI auxiliary mirror
Sapphire fiber
uspending
main mirror

[
|
|
)

o~
7

Vacuum is common

Radiation outer shield

Heat links start from
this stage to inner
radiation shield

™ LCGT noise budget r,,=771w f,=230Hz | |
& ]
N TAMA
‘1_: 1 0_20 noise level
COST US$ 135M 5
>
. QL »
Does not include @ 10
salaries & maintenances g
of facilities. 102

Frequency [Hz]




David Coward
Rencontres de
Moriond

AIGO

* Project prospectus

completed 2006

* AIGO concept plan
submitted to Minister
for Science Oct 2006

e AIGO International
Advisory Committee

appointed

AIGO provides strong
science benefits e.g.
host galaxy localization

Skm baseline sensitive
to inspirals in the range
~250Mpc

Australian Consortium
welcomes new partners
in this project
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Interferometers Under
Far Away Approval




ESA & NASA have
exChanged letters of
agrecment.

Launch 2013, observing

_ 2014+,
" Mission dugation up to 10 yrs.
_LISA Pathfinder technology

Courtesy B. Shutz

demonstrator (ESA: 2008)
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Einstein Telescope Configuration

1)ET will be the only surviving project. Virgo and
LIGO will not have enough sensitivity for making a
Network with ET

2)ET will be formed by at least 4 interferometers,
well spaced. For solving the “Inverse Problem” 4
variables have to be measured:2 angles and 2
polarizations.

3)Possibly the ET network should have highly
spaced interferometers. A wise decision could be in
the same spirit as ESO whose telescopes are not in
Europe. ET network should be scattered in best
sites for better solving the “Inverse Problem”




Einstein Gravitational-Wave

h(f) [1/sqrt(Hz)]
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Harald Liick

for the European Gravitational-Wave
Community



Some Final Considerations

* Bar detectors have grown up, by means of a fantastic
technological effort, to enormous and unexpected
sensitivity and operation stability. Their operation was
so good as to create the first GW network.

 The big steps forward in the last decade has been in the
Interferometers technology. They reached design
sensitivity above 100 Hz and stability is so good
(unespectedly) that we have created an efficient
network. Advanced LIGO and Virgo will open the very
low frequency region.

* Class Einstein, after what we have lorned by the big
machine, seems feasable with a very high probability of
success. 1 Day of data of ET is equivalent to 10° days of
data taking with Virgo or LIGO. This seems to be the
right way to go for starting GW astronomy.




So Gravity waves do exist and Astrophysical
phenomena involve:

enormous masses According to GR:
and big =) Copious emission
accelerations of GW

i =10-39 *

amazing Ograv=10"""
) .

matter Matter easily

i traversed b
density e ¥

Gravitational Waves are then odd objects by
means of which we may start a new Astronomy:

GW Astronomy.
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The Indirect Evidences of GW Existence

1974:First Discovery by 5
Taylor and Hulse S -
(Nobel Prize 1993) ” «F = Experiment
o| _ GENERAL
Coalescing Neutron Star Al RELATIVITY
SyStem PSR 1913+16 Orbital period decreasing
“® "®I" changes periaster passage
12 L time in total agreement
Q»% 2T WithGR

1975 1980 1985 1990
ANNO

Further evidences

PSR J0737-3039:
The binary Neutron Star system PSR J0737-3039 was discovered in 2003.
The system is doing exactly what GR theory predicts.

T. Strohmayer:

White Dwarf very tight Binary System (80000 km). The system's orbital period
is 321.5 seconds and is decreasing by 1.2 milliseconds every year

in complete agreement with GR theory
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Cryogenlc Bar Detectors
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Why is Gravity so Appealing

E.m. \ Weak
oy vy
Photon 1 W, Z
OsrRONG= 1 0y =102 [I Aypeak=10"

Why is Gravitational Coupling Constant amazingly small?

Three ingredients for a New Astronomy

1)Smallness of agg,,=10-3° means that interaction of Gravitational Waves (GW)
with matter is extremely small.

2) General Relativity Theory (GR) predicts the existence of GW and shows that
an accelerated mass emits GW.

3)Taylor and Hulse showed observationally that GW exist and their rate of
emission follows “EXACTLY” GR predictions




The Generation of GW

Einstein eq.s
¥, =BnG/c) 1,

N T A
W uvo g uveA

7 == 2 (2 ol Y av )

The GW Generator

R0 source
distance.
p source

t-R,/c

GW are produced by the second time derivative of the source
Quadrupole Momentum of the mass distribution
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GW Sources

1) Coalescing Binary Systems: NS and Black Holes Rate: 1~2/year in

‘Maximal Asymmetry > “Large” h a 50Mpc sphere.

1 c—'lQ.'l
< .

102

—19F
a

C‘known” waveform mmmp -

_ 407

—40"

_4g—'°=

_qg—'=?

—107"®

T (sec)

2) Supernovae Explosions Low Asymmetry: “Small” h

Explosions Rate: -

Virgo Cluster (h~10-23) 1~2/year
Galassia (h~10-2%) 1/30 years




3) Periodic Sources: 10° Galactic rotating Neutron Stars emitting
in the Hz regionVery Low Asimmetry: Very “Small” h but very
long Integration Time

Affected by Earth Doppler shift
io (t-isRfc) TN is the NS direction h< 1025

it
e : e R the Earth radius

4) Big-Bang Cosmological BKG (CB): In the Virgo bandwidth
we may observe GW emitted after 10-*4s from time zero. GW are
the only way to investigate Bing-Bang close to time zero.
Detection of CB requires Coincidence of two close detectors
extremely sensitive.
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Periodic sources: upper limits

This is the Hanford all sky upper limit for periodic sources strain (95%
confidence level), obtained for the Hanford observatory. The plot compares
several search method, documented in the S4 paper LIGO-P060010-05-Z
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Periodic sources: upper limit

The same of the previous figure, for the Livingston observatory.
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Upper limits: bursts

Exclusion diagrams (rate limit at 90% confidence level, as a function of signal amplitude) for sine-Gaussian simulated
waveforms for the S4 analysis compared to the S1 and S2 analyses (the S3 analysis did not state a rate limit). These curves
incorporate conservative systematic uncertainties from the fits to the efficiency curves and from the interferometer response
calibration. The 849 Hz curve labeled “LIGO-TAMA” is from the joint burst search using LIGO S2 with TAMA DTS data
[8], which included data subsets with different combinations of operating detectors with a total observation time of 19.7

days and thereby achieved a lower rate limit. The hrss sensitivity of the LIGO-TAMA search was nearly constant for sine-
Gaussians over the frequency range 700-1600 Hz.
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Upper limit: inspirals

Upper limits on the binary inspiral coalescence rate per year and per L10 as a function of total mass of the
binary, for Primordial Black Hole binaries. The darker area shows the excluded region after accounting for
marginalization over estimated systematic errors. The lighter area shows the additional excluded region if
systematic errors are ignored.
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Upper limits: inspirals

Same as the previous figure for Binary Neutron Stars
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Same as the previous figure for Binary Black Holes
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Upper bounds: stochastic backgorund

90% Upper Limit on GW spectrum at 100 Hz (see the model on the right) as a Model:

function of a for S3 HIL1 and S4 HIL1+H2L1 combined, and expected final ]

sensitivities of LIGO H1L1 and H1H2 pairs, assuming LIGO design sensitivity £\
and one year of exposure. Qew(f) =Qa ( 100 Hz)




Three ingredients for a new Astronomy

Forces Between two Protons

Electrostatic Repulsion Gravitational Attraction
1 1 F = 1 1
F=20 2 1000000000000000000000000000000000000000 52

1)Smaliness of Oeeav-10» means that interaction of Gravity with matter is
extremely small.

2)Einstein in his General Relativity Gravitational Waves in
showed that: Curved Space-Time

-Accelerated masses emit GW.

Ly

-In presence of masses, the
Space-Time (ST) is curved.

-Gravitational Waves are ripples in
the ST traveling at speed of light.

3)Taylor and Hulse demonstrated, indirecly, that GW exist and their rate
of emission follows “EXACTLY” General Relativity predictions




The Detection of Gravitational Waves

F.A.E.Pirani in 1956 first proposed to measure Riemann Tensor by
measuring relative acceleration of two freely falling masses.
If A and B are freely falling particles, their separation *=(x ,-xg)*

satisfies the Geodesic Deviation equation:

DE, 1,
dt’ ﬁih‘g&ﬁ _—

Riemann Force

The receiver is a device measuring space-time curvature i.e. the

relative acceleration of two freely falling masses or their relative

displacement.

Effect of Riemann Force

i B\

]
A L

N 92

Effect of 2 Polarizations




Cryogenic Bar Detectors
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Modern Interferometers with

Uncertainty Principle: QND Signal Readout

Ap.AN-~1
We only measure o,
the only one containing
the signal, hence we
can ignore AN.

Optical Noise can
be less than SQL.:
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1970 1980 Break Through : 1981

The first The Max Planck 30 m | | The 10 m Glasgow and 40

Interferometer for GW | pejay Lines Interferom. | | m CALTEC Fabry Perot
detection was built Problem: Too much Interferometers

by Robert Forward Diffused Light
(Hughes Lab) W
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LCGT: A CRYOGENIC INTERFEROMETER

Suspension Conceptual Design
, SAS: 3 stage anti-

inverted pendulum
Vacuum is common

Radiation outer shield
SPI auxiliary mirror

Sapphire fiber
uspending
main mirror

Heat links start from
this stage to inner
radiation shield

Main mirror

Detector A
COST USS$ 135M 2nd MC
Does not include i
salaries & maintenances
of facilities.

_vibration system with

FM2

Mirrors
Cooled at
20 K

EM2
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PD 1

SEM1

EM1




sensitivity to gravitational waves

extended systems < » compact systems

coalescence of
/ massive black hole
supernova
proto-neutron
rotating stars
neutron stars
coalescence of

neutron-star and
black-hole binaries

\

unresolved
Galactic

binaries resolved
LISA  Galactic
binaries
extreme mass
ratio inspiral
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