Observation of Antimatter in Our Galaxy

Piergiorgio Picozza

INFN & University of Rome "Tor Vergata"

TAUP 2007 September 11-15, 2007Sendai, Japan

ANTIMATTER

Gamma Evidence for Cosmic Antimatter?

Cosmic Diffuse Gamma Spectrum

P. Sreekumar et al, astroph/9709257

Gamma Evidence for Cosmic Antimatter? Steigman 1976, De Rujula 1996, Dolgov 2007

Osservation in the 100 MeV gamma range

Globally B-Symmetric Universe

This possibility seems observationally excluded

A.G. Cohen, A. De Rujula and S.L. Glashow, Astrophys. J. 495, 539, 1998

Lumps of Antimatter in our Galaxy?

C. Bambi and A. D. Dolgov, arXiv: astro-ph/0702350 and therein enclosed references 0.511 MeV positron annihilation-Integral/SPI

G. Weidenspointner et al., astro-ph/070261

New Gamma Space Experiments

Antimatter Direct research

Antimatter which has escaped as a cosmic ray from a distant antigalaxy Sreitmatter, R. E., Nuovo Cimento, 19, 835 (1996)

Antimatter from globular clusters of antistars in our Galaxy as antistellar wind or anti-supernovae explosion K. M. Belotsky et al., Phys. Atom. Nucl. 63, 233 (2000), astro-ph/9807027

Antimatter in Cosmic Rays

1979:	First observation (Golden et al)	10^{-3} — Solar minimum in + phase $\top \stackrel{\text{H}}{\leftarrow}$
1979:	Russian PM (Bogomolov et al)	Solar maximum in - phase \Box
1981:	Excess reported (Buffington et al)	╺╴╶╴╴╴╴╴╴╴╴╴╴╴╴╴╴
1985:	ASTROMAG Study Started	
1987:	LEAP, PBAR (upper limits)	
1991:	MASS	
1992:	IMAX	5
1993:	TS93, BESS	10
1994:	CAPRICE94, HEAT-e⁺	☐ Bogomolov et al. ★ Buffington et al.
1996:	Solar minimum	
1997:	BESS	
1998:	CAPRICE98, AMS-01	$10 \frac{1}{10^{-1}} \frac{1}{10} \frac{10}{10}$
1999:	BESS	Kinetic Energy (GeV)
2000:	HEAT-pbar, BESS	Before MASS Elight

2004: BESS Polar I

Caprice Subnuclear physics techniques in space experiments

- Charge sign and momentum
- Beta selection
- Z selection
- hadron electron discrimination

BESS Coll. 30th ICRC 2007

BESS Coll. 30th ICRC 2007

Antistars in our Galaxy?

Abundance of elements in CR reflects relative abundances in the Galaxy

$$\frac{N_{\bar{S}}}{N_S} \lesssim \left(\frac{\bar{p}}{p}\right)_{\rm ES} \lesssim 10^{-5} \quad \Rightarrow \quad N_{\bar{S}} \lesssim 10^6$$

$$\frac{N_{\bar{S}}}{N_S} \lesssim \left(\frac{\bar{H}e}{He}\right)_{\rm ES} \lesssim 10^{-6} \quad \Rightarrow \quad N_{\bar{S}} \lesssim 10^5$$

Antideuterons

• Pair annihilating WIMPS produce: $\gamma, \nu, e^+ \dots p$...

F. Donato *et al.* Antideuterons as a signature of supersymmetric dark matter. *Phys. Rev D*, 62(4):043003

Antideuterons

F. Donato et al. – 30th ICRC 2007

What do we need?

- Measurements at higher energies
- Better knowledge of background
- High statistic
- Continuous monitoring of solar modulation

Long Duration Flights

Antimatter Dark Matter Space Missions

PAMELA and AMS-02: Observatories at 1 AU

PAMELA

Launched in orbit on June 15, 2006, on board of the DK1 satellite by a Soyuz rocket from the Bajkonour launch site.

Since July 11, 2006, Pamela is in continuous data taking mode 16 Gigabytes data/day

The amount of data collected is ~ 5.8 TB, corresponding to more than 7×10^8 events.

PAMELA Collaboration

PAMELA nominal capabilities

	<u>energy range</u>	<u>particles in 3 years</u>
Antiprotons	80 MeV - 190 GeV	$\sim 10^{4}$
Positrons	50 MeV – 270 GeV	$\sim 10^{5}$
Electrons	up to 400 GeV	$\sim 10^{6}$
Protons	up to 700 GeV	$\sim 10^{8}$
Electrons+positrons	up to 2 TeV (from ca	lorimeter)
Light Nuclei	up to 200 GeV/n	He/Be/C: $\sim 10^{7/4/5}$
AntiNuclei search	sensitivity of 3x10 ⁻⁸ in a	antiHe/He

Secondaries / primaries i.e. Boron/ Carbon to constrain propagation parameters

D. Maurin, F. Donato R. Taillet and P.Salati ApJ, 555, 585, 2001 [astro-ph/0101231] F. Donato *et.al*, ApJ, 563, 172, 2001 [astro-ph/0103150]

Pamela maps at various altitudes

Mean S1 rate. Altitude: 576 km - 619 km. (Hz)

Galactic H and He spectra

Primary and Albedo (sub-cutoff measurements)

AMS-02 on ISS In Orbit 2009

The Completed AMS Detector on ISS

AMS-02 goals and capabilities

Cosmic rays spectra and chemical composition up to 1 TeV

Search for Antimatter in Space

Search for Dark Matter

Gamma Rays

AMS will identify and measure the fluxes for:

- p for E < 1 TeV with unprecedented precision
- e+ for E < 300 GeV and e- for E < 1 TeV (unprecedented precision)
- Light Isotopes for E < 10 GeV/n
- Individual elements up to Z = 26 for E < 1 TeV/n

Absolute fluxes and spectrum shapes of protons and helium are important for calculation of atmospheric neutrino fluxes

Composition and spectra are important to constraint propagation, confinement, ISM density

Direct search for antimatter: AMS on ISS

Sensitivity of AMS: If no antimatter is found => there is no antimatter to the edge of the observable universe (~ 1000 Mpc).

y06K301

Unique Feature Of AMS

Combining searches in different channels could give (much) higher sensitivity to SUSY DM signals

Balloon-borne Experiment with a Superconducting Spectrometer

Search for Primordial Antiparticle antiproton: Novel primary origins (PBH,DM) antihelium: Asymmetry of matter/antimatter

Precise Measurement of Cosmic-ray flux: highly precise measurement at < 1 TeV

BESS Collaboration As of April, 2006

BESS Detector

-Rigidity measurement

- SC Solenoid (L=1m, B=1T)
- Min. material (4.7g/cm^2)
- Uniform field
- Large acceptance
- -Central tracker
- (Drift chamber
- δ~200μm
- Z, *m* measurement

$$- R,\beta \quad -->m = ZeR \frac{1}{\beta^2-1}$$

- dE/dx --> Z

BESS-Polar II December 2007

- Long duration flight of 20 days with two circle around the pole, 4~5 x BESS-Polar I statistics
- Combined measurements with PAMELA

BESS Polar II Observation (Expected)

Antiproton Spectrum

Search for Antideuteron and AntiHelium (Search for PBH)

General Antiparticle Spectrometer (GAPS)

K.Mori et al. APJ 566 604-616 2002

Antideuterons

F. Donato et al. – 30th ICRC 2007

GLAST

Gamma-Ray Large Area Space Telescope

3000 kg, 650 W 1.8 m x 1.8 m x 1 m 20 MeV - 300 GeV

LKP Detection by LAT

Reconstructed LAT electron spectrum

Very, very favorable situation:
LKP mass = 300 GeV
e⁻ + e⁺ yield direct annihilation ~20% of the

total

Single (closest) clump1 year observation

Moiseev et al. -30^{th} ICRC 2007

Red points – "conventional" electron flux Blue line – LKP annihilation in electrons Black points – reconstructed LAT electron spectrum with LKP

the most compact instrument for highenergy astrophysics It combines for the first time a gamma-ray imager (30 MeV- 30 GeV) with a hard X-ray imager (18-60 keV) with large FOVs (1-2.5 sr) and optimal angular resolution

AGILE in orbit

April 23, 2007

ISRO Sriharikota base, PSLV-C8

AGILE gamma-ray detection of the Vela PSR

12 orbits data accumulation of the Vela PSR region

BESS Coll. 30th ICRC 2007

AMS-01 Bremstrahlung event

J.E. Koglin et al. 30th ICRC 2007

PEBS - Positron Electron Balloon Spectrometer

P. von Doetinchem, H. Gast, T. Kirn, G. Roper Yearwood, S. Schael I. Physikalisches Institut B, RWTH Aachen, Germany

What could be measured with a 2500 cm² sr Experiment ?

What ever PAMELA or AMS-02 might discover in the positron fraction, we need an independent verification.

Large Area Telescope (LAT) Gamma Ray Burst Monitor (GBM)

(Gamma Ray Burst Monitor) GBM:

correlative transient observations

