Reactor Neutrino Oscillation Experiments

- Recent Results and Future Prospects -

Karsten Heeger

University of Wisconsin

(on behalf of the KamLAND and Daya Bay collaborations)

TAUP2007, Sendai, Japan

Early History

1956 - "Observation of the Free Antineutrino" by Reines and Cowan

1990's - Oscillation Searches at Chooz + Palo Verde: $\overline{v}_e \rightarrow v_x$

Chooz, Ardennes, France

reactor e flux measurement with 1 detector

2007, Sendai, Japan, September 13, 2007

reactor $\bar{\rm v}$ flux ~ 6 x 106/cm²/sec

Antineutrino Detection

$$\overline{\nu}_{e}$$
 + p \rightarrow e⁺ + n

through inverse β -decay

TAUP2007, Sendai, Japan, September 13, 2007

Reactor \overline{v}_e disappearance at KamLAND

Reactor Neutrino Physics 1956-2004

Precision Neutrino Oscillation Parameters with KamLAND

Updates to 2007 KamLAND analysis:

- increased livetime
- lowered analysis threshold
- modified analysis to enlargen the fiducial volume
- reduced uncertainty in ¹³C(α,n)¹⁶O backgrounds
 - → see I. Shimizu's talk
- reduced systematic in target protons (fiducial volume)
 - \rightarrow see following slides

TAUP2007, Sendai, Japan, Septemt

Routine Calibration Sources

⁶⁸ Ge	e+	2 x 0.511 MeV
⁶⁵ Zn	γ	1.116 MeV
⁶⁰ Co	γ	2.506 MeV
²⁴¹ Am ⁹ Be		γ, n 2.22, 4.44, and 7.65 MeV
²⁰³ Hg		
¹³⁷ Cs		
Laser a	nd LEDs	

Karsten Heeger, Univ. of Wisconsin TAUP2007, Sendai, Japan, September 13, 2007

KamLAND 4π "Full-Volume" Calibration

Karsten Heeger, Univ. of Wisconsin

TAUP2007, Sendai, Japan, September 1

calibration deck

inside view of KamLAND detector

4π Full-Volume Calibration

4π calibration system

4π Full-Volume Calibration of KamLAND

 X_{prime} axis is defined by azimuth angle of the source.

Source positions are used determined to check the radial dependence of vertex and energy biases.

Karsten Heeger, Univ. of Wisconsin TAUP2007, Sendai, Japan, September 13, 2007

Radial Dependence of Vertex Reconstruction Biases

source location radii R ~ 2.8, 3.3, 4.1, 4.6, 5.5m

 \rightarrow for the range shown below all biases are within 3cm

spallation products are used to extend fiducial volume from 5.5 to 6m

1. construct PDF for accidental coincidence events $f_{acc}(E_d, \Delta R, \Delta T, R_p, R_d)$ - pair coincidence events in a delayed-coincidence window between 10ms and 20s

shaded region indicates the 1 sigma error band caused by the uncertainties in the likelihood selection

KamLAND 2007 Data Set

Vertex distribution of prompt and delayed events

red = events with fiducial volume and likelihood ratio cut

→ likelihood selection will be discussed in Shimizu's talk

Prompt event energy spectrum for \overline{v}_e

Systematic Uncertainties and Backgrounds

Systematic Uncertainties

Principal change from $2004 \rightarrow 2007$: fiducial volume $4.7\% \rightarrow 1.8\%$

energy threshold, cut eff.
 → energy scale, L-selection

Detector related	Reactor related			
Fiducial volume	1.8	1.8 $\overline{\nu}_e$ -spectra		
Energy scale	1.5	Reactor power	2.1	
L-selection eff.	0.6	Fuel composition	<1.0	
OD veto	0.2	Long-lived nuclei	0.3	
Cross section	0.2	Time lag	0.01	
Livetime	0.03			
Sum of syst. uncert .:	2.4		3.4	

total systematics: 4.1%

Background	Contribution	
Accidentals	80.5 ± 0.1	estimated backgrounds in the
⁹ Li/ ⁸ He	13.6 ± 1.0	data set
Fast neutron & Atmosperic ν	<9.0	
$^{13}C(\alpha,n)^{16}O$ G.S.	157.2 ± 17.3	
$^{13}C(\alpha,n)^{16}O^{12}C(n,n\gamma)^{12}O(4.4 \text{ MeV } \gamma)$	6.1 ± 0.7	
${}^{13}C(\alpha,n){}^{16}O 1^{st}$ exc. state (6.05 MeV e ⁺ e ⁻)	15.2 ± 3.5	
${}^{13}C(\alpha,n){}^{16}O 2^{nd}$ exc. state (6.13 MeV γ)	3.5 ± 0.2	
Total excluding geo-neutrinos	276.1 ± 23.5	(number of events)

 \rightarrow geo-neutrinos will be discussed in Shimizu's talk

http://www.sno.phy.gueensu.ca/

TAUP2007, Sendai, Japan, September 13, 2007

KamLAND (Anti-)Neutrino Program

Reactor Antineutrinos

 \rightarrow Fri, Room A: I. Shimizu → posters: K. Ichimura → posters: Y. Minekawa

Solar ⁷Be Neutrinos

 $\nu_e + e^- \rightarrow \nu_e + e^-$

 \rightarrow Wed, Room B: Y. Kishimoto

Terrestrial Antineutrinos

PRL 92:071301 (2004)

Other Physics Studies

- Oscillation analysis of \overline{v}_{e} spectrum
- Nucleon decay studies
- Supernova watch
- Muon spallation

Karsten Heeger, Univ. of Wisconsin

TAUP2007, Sendai, Japan, September 13, Nature 436, 499-503 (28 July 2005)

RCNS, Tohoku University	Colorado State University	Stanford University		
University of Alabama	Drexel University	University of Tennessee		
UC Berkeley/LBNL	University of Hawaii	UNC/NCSU/TUNL		
California Institute of Technology	Kansas State University	IN2P3-CNRS and University of Bordeaux		
	Louisiana State University	University of Wisconsin		
Karsten Heeger, Univ. of Wisconsin	TAUP2007, Sendai, Japan, September 13, 2007			

Discovery Era in Neutrino Physics: 1998 - Present

Precision Measurement of Oscillation Parameters

Karsten Heeger, Univ. Wisconsin

Precision Measurement of Oscillation Parameters

TAUP2007, Sendai, Japan, September 13, 20

 $\sin^2 \theta_{13}$

Is there $\mu - \tau$ symmetry in neutrino mixing?

Can we search for leptonic \mathcal{P} ?

θ_{13} from Reactor and Accelerator Experiments

reactor (\overline{v}_{e} disappearance) $P_{ee} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E_{v}}\right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E_{v}}\right)$

- Clean measurement of $\theta_{\rm 13}$

accelerator (v_e appearance)

- No matter effects

mass hierarchy

CP violation

matter

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}\left[\cos\Delta_{32}\cos\delta\right] \sin\Delta_{32}\sin\Delta_{32}\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}\left[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\right]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\left(1 - 2s_{13}^{2}\right)\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \,. \end{split}$$

- $sin^22\theta_{13}$ is missing key parameter for any measurement of $~\delta_{\text{CP}}$

High-Precision Measurement of θ_{13} with Reactor Antineutrinos

Search for θ_{13} in new oscillation experiment with <u>multiple detectors</u>

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$
Small-amplitude oscillation
due to θ_{13} integrated over E
$$Large-amplitude oscillation due to \theta_{12}$$

Karsten Heeger, Univ. of Wisconsin

TAUP2007, Sendai, Japan, September 13, 2007

0.3 E

10

Baseline (km)

100

Detecting Reactor \overline{v}_e

$$\overrightarrow{v_{e}} + p \rightarrow e^{+} + n$$

$$0.3 b \qquad \rightarrow p \rightarrow D + \gamma (2.2 \text{ MeV})$$

$$(delayed)$$

$$49,000 b \rightarrow + \text{Gd} \rightarrow \text{Gd}^{*}$$

$$\rightarrow \text{Gd} + \gamma's (8 \text{ MeV})$$

$$(delayed)$$

$$(delayed)$$

$$(delayed)$$

coincidence signal allows background suppression

0.1% Gadolinium-Liquid Scintillator

- Proton-rich target
- Easily identifiable n-capture signal above radioactive backgrounds
- Short capture time (τ~28 µs)
- Good light yield

¹⁵⁵Gd $\Sigma\gamma$ =7.93 MeV ¹⁵⁷Gd $\Sigma\gamma$ =8.53 MeV

other Gd isotopes with high abundance have very small neutron capture cross sections

Principle of Relative Measurement

Measure ratio of interaction rates in detector (+shape)

Concept of Reactor θ_{13} Experiments

Strategy/Method

- 1. relative measurement between detectors at different distances
- 2. cancel source (reactor) systematics
- 3. need "identical detectors" at near and far site

Concept of "Identical Detectors"

identical target

identical detector response

- \rightarrow <u>relative</u> target mass (measure to < 0.1%)
- → <u>relative</u> target composition between pairs of detectors (e.g. fill pairs of detectors from common reservoir)

→ calibrate <u>relative</u> antineutrino detection efficiency of detector pair to < 0.25%</p>

Ratio of Measured to Expected \overline{v}_e Flux

Expected precision in Daya Bay to reach $sin^22\theta_{13} < 0.01$

World of Proposed Reactor θ_{13} Neutrino Experiments

Proposed and R&D.

Double Chooz

Reactor Experiment for Neutrino Oscillations (RENO) at YongGwang, Korea

TAUP2007, Sendai, Japan, September 13, 2007

 \rightarrow S.-B. Kim, Fri afternoon

Daya Bay, China

http://dayawane.ihep.ac.cn/

Design, R&D, and Prototyping for Daya Bay

Design of civil infrastructure

groundbreaking on October 13, 2007

Detector Prototypes at IHEP and in Hong Kong

Joint R&D program in US and China on Gd-LS Production

Acrylic Vessel Prototyping

Detector-Related Uncertainties

Daya Bay as an example: most ambitious in reducing error between detectors

Absolute Relative measurement measurement						
Source of uncertainty		Chooz	Daya Bay (relative)			
		(absolute)	Baseline	Goal	Goal w/Swapping	
# protons		0.8	0.3	0.1	0.006	
Detector	Energy cuts	0.8	0.2	0.1	0.1	
Efficiency	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	< 0.01	<0.0 1	<0.01	
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%	

O(0.2%) precision for relative measurement between detectors at near and far sites

Karsten Heeger, Univ. of Wisconsin TAUP2007, Sendai, Japan, September 13, 2007

Ref: Daya Bay TDR

Upcoming Reactor θ_{13} Neutrino Experiments

	Location	Thermal Power (GW)	Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)	Exposure in 3 yrs (ton-GW-y)
Angra						
proposed / R&D	Brazil	4.1	300/1500	250/2000	500	~ 6150
Daya Bay construction start in 07	China	11.6 17.4 after 2010	360(500)/1750	260/910	80	~ 4180
Double-CHOOZ						
under construction	France	8.7	150/1067	80/300	8	~ 210
RENO						
ready to start construction	Korea	17.3	150/1500	230/675	15.4	~ 800

* experiments are underway

Karsten Heeger, Univ. of Wisconsin TAUP2007, Sendai, Japan, September 13, 2007

Neutrino Physics at Reactors: Past, Present, Future

Next - Precision measurement of θ_{13}

2007 - Precision measurement of Δm_{12}^2 . Evidence for oscillation

> 2004 - Evidence for spectral distortion

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe

1956 - First observation of (anti)neutrinos

Past Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France **Reactors in Japan**