TAUP Ultra-High Energy Cosmic Ray Observations

Karl-Heinz Kampert, University of Wuppertal e-mail: kampert@uni-wuppertal.de

- The Issues
 - Energy Spectrum
 - CR Composition (p,Fe,γ,ν)
 - Arrival Directions
- The Future
- Concluding Remarks

UHECR Experiments

Understand the origin of CRs

• Find the most power cosmic

HiRes-I & II

Auger - Starting the Golden Hybrid Era -

Telescope Array

Perati,

accelerators

Learn about CR acceleration

• EHE particle physics

Construction

Exposures 2007

TAUP, Sept. 2007, Sendai (Japan)

The HiRes Experiment

- HiRes-I
 - 21 mirrors
 - 1 ring, full azimuth, <u>3°-17° elevation</u>
 - Sample & Hold DAQ System
 - Took data: June 1997-April 2006

HiRes-II

- 42 mirrors
- 2 rings, full azimuth, <u>3°-31° elevation</u>
- FADC DAQ System
- Took data: Dec. 1999-April 2006
- Both:
 - 5.1 m² mirrors, 16x16 PMTs

HiRes-II

slide from D. Bergmann

HiRes Monocular Spectra

GZK effect

Expect 39.9 \pm 3.3, observe 13 P=7x10⁻⁷ (4.8 σ); 6.5x10⁻⁶ (4.3 σ)

HiRes Aperture & Error Table

TAUP, Sept. 2007, Sendai (Japan)

Pierre Auger Observatory

1482 deployed1436 filled1364 taking data

~ 85%

All 4 fluorescence buildings complete, each with 6 telescopes

Final: 1600 tanks

TAUP, Sept. 2007, Sendai (Japan

August 1, 2007

The Auger Hybrid Observatory

24 fluorescence telescopes...

...1600 Water Cherenkov tanks

Quadruple Event

20 May 2007 E ~ 10¹⁹ eV

Hybrid - Precise Shower Geometry

first step towards precise energy, depth of maximum

The Power of Hybrid

	Hybrid	SD-Only	FD-only
Angular Resolution	~ 0.2°	~ 1 - 2°	~ 3 - 5°
Aperture	Flat model ind.	Flat model ind.	growing model depend.
Energy	model ind.	model dep.	model ind.
	The combine the sum of	nation is of the in	more than dividuals !

FD-mono-Uncertainties: HiRes vs Auger

	Auger	HiRes
Fluorescence Yield	14%	_ ₁₁₆ ∫ 6%
Energy loss rate		11,0 10%
p, T, & humidity effects on yield	7%	4%
Photometric Calibration	9,5%	10%
Invisible Energy	4%	5%
Reconstruction	10%	?
Total	21%	17%
if reconstruction uncertainty is ignored: 19 % Note: this causes an integral flux uncertainty ($\gamma = 3.0$) of: 46 % 37 % (on top of effect of acceptance uncertainty)		

FD energy calibration

Fluorescence yield is at present the dominant error contribution

also: Auger uses Nagano et al, HiRes uses Kakimoto et al.

New (better) data will become available from:

AIRFLY using test beam at DAΦNE and elsewhere measuring p, T, and humidity dependence of abs. yield

FLASH using test beam at SLAC

MACFLY using CERN-SPS test beam

Data on abs. yields expected to be released at workshop in Spain next week

5th Fluorescence Workshop El Escorial - Madrid, Spain 16 - 20 September 2007

FD Systematics by Interaction Models

QGSJet & SIBYLL agree within a few percent

SD Systematics by Interaction Models

Drescher et al.; Astropart. Phys. 21 (2004) 87

Effect of High-Energy Interaction Model: Sibyll / QGSJet (Gheisha) ~ 30 % effect to E

Effect of Low-Energy Interaction Model: GHEISHA & FLUKA / UrQMD ~ 10-20 % effect to E

Auger: SD Calibration by FD

Energy Spectum

TAUP, Sept. 2007, Sendai (Japan)

Auger E-Spectrum ($\Theta < 60^\circ$)

Pierre Auger Collab. @ ICRC 2007

TAUP 2007, Sendai (Japan)

Energy Spectra: Comparison

Energy Spectra: Comparison

Auger Spectrum & Source Distr.

Gomposition

Ankle: Measurement of composition is crucial !

TAUP 2007, Sendai (Japan)

Karl-Heinz Kampert

20.5

Mass from X_{max} observations

Pierre Auger Collab. @ ICRC 2007

Systematic error of X_{max} : <15 g/cm2 @ <10¹⁸ eV; < 12 g/cm² @ > 10¹⁸ eV

Mass from X_{max} observations

UHE Photons ? Expected by Top-Down models

e.g.: Super Heavy Dark Matter fit to AGASA

Gelmini, et al, astro-ph/0506128

UHE-Photon Limits from Ground Array

TAUP 2007, Sendai (Japan)

GZK-effect: Yes UHE Photons: No

TopSDownBottomSUp

Test of Lorentz Invariance Violation

LIV -> may modify photon dispersion relation

Galaverni & Sigl arXiv:0708.1737

$$\omega^2 = k^2 + m^2 + \xi_n k^2 (k/M_{Pl})^n$$

 \rightarrow affect the threshold for e⁺e⁻ pair production

UHE Photon Physics: Future

Neutrinos by Horizontal EAS

Only a neutrino can induce a young horizontal shower !

shower front

Search for Earth-skimming v_{τ}

HiRes: events ± 10° from horizon, background events in MC, ~100 laser events **Auger:** Surface Det. ; using signal traces & direction, background-free

TAUP 2007, Sendai (Japan)

Arrival Directons

Angular Resolution

Anisotropy Searches

Galactic Centre

4.5 sigma excess (~ 22 %)

2.9 sigma excess (~ 85 %)

H.E.S.S: gamma ray observation Sgr A and Molecular Cloud

Auger: Galactic Centre Region

Data: Jan 2004 - March 2007

TAUP 2007, Sendai (Japan)

0.1 < E < 1 EeV

=	search	window size	n_{obs}/n_{exp}
-	extended	10° (TH)	$5663/5657 = 1.00 \pm 0.02(\text{stat}) \pm 0.01(\text{syst})$
		20° (TH)	$22274/22440 = 0.99 \pm 0.01(\text{stat}) \pm 0.01(\text{syst})$
_	point-like	1.3° (G)	$192.1/191.2 = 1.00 \pm 0.07(\text{stat}) \pm 0.01(\text{syst})$

Pierre Auger Collab. @ ICRC 2007

1 < E < 10 EeV

search	window size	n_{obs}/n_{exp}
extended	10° (TH)	$1463/1365 = 1.07 \pm 0.04(\text{stat}) \pm 0.01(\text{syst})$
	20° (TH)	$5559/5407 = 1.03 \pm 0.02(\text{stat}) \pm 0.01(\text{syst})$
point-like	0.8° (G)	$16.9/17.0 = 0.95 \pm 0.17(\text{stat}) \pm 0.01(\text{syst})$

AGASA 22% excess

- would give a 16 σ excess in Auger
- SUGAR 85% excess
 - would give a 30σ excess in Auger

³⁷ Earlier Results: Astropart. Phys. 27 (2007) 1

Other Searches (Auger)

No significant observation of CR-Clusters: Previously reported by AGASA

No correlation with BL-Lacs: Previously reported based on data from AGASA, Yakutsk and HiRes E>10 EeV

despite of having collected 6 times more events above 10 EeV.... But: Two prescriptions are running...

Where is Our Crab?

Whipple 1989

based on Angela Olinto (TeV 2007)

 $L = 1 \text{ km}^2 \text{ sr yr}$ - Linsley

based on Angela Olinto (TeV 2007)

 $AGASA = 1.63 \ 10^3 \ L$

New Projects & Directions

Telescope Array (TA)

Surface detector:

512 scintillation counters
on 1.2 km grid (~ 600 km²)
95% deployed
Commissioning in progress.

Fluorescence detectors

3 sites; 100% deployed Commissioning in progress. Study spectrum, composition, anisotropy Will be taking data in October, 2007.

TA Surface Detectors (SD)

TALE @ Telescope Array

TALE @ Telescope Array prototype up to 72° elevation

> kilometers -1 TA SD Surface Infill Muon Infill T Tower Detector < Tower F.O.V. 0 2 3 kilometers

proposed Ow Energy extension

Karl-Heinz Kampert

InFill Array

- standard TA: 1.2 km grid
- Surface infill: ~ 100 detectors on 0.4 km grid
- Muon stations: 16 on 0.2 km

HEAT & AMIGA in Auger-South

High Elevation Auger Telescopes (HEAT) 30° - 60° elevation

- standard Auger: 1.5 km grid
- infill 1: ~ 42 detectors on 750 m grid
- infill 2: ~ 24 detectors on 433 m grid

Auger North

Need for two sites realized from the early beginning

Southern Site: Mendoza

Hybrid detection & energy calibration
Water Cherenkov surface array

1600 stations, 3000 km²
1.5 km triangular grid

Completion end 2007

Northern Site: Colorado

Retain features & functionality of Southern Site
 Hybrid detection & energy calibration
 Water Cherenkov surface array
 4000 stations, 10,370 km²
 Square mile grid

Altitude and latitude are similar

Southern and Northern sites are shown at the same scale

JEM-EUSO Telescope on ISS

JEM-EUSO Telescope will be attached to Exposure Facility of Japanese Experiment Module (JEM/EF) of ISS in 2013

Vertical Mode

Tilted Mode Larger effective area (x5) with ~35°tilt

talk by Y. Takahashi (Wednesday)

TAUP, Sept. 2007, Sendai (Japan)

JEM-EUSO Telescope on ISS

Radio Emission from Air Showers

Cosmic Rays in the Radio

TAUP, Sept. 2007, Sendai (Japan)

Concluding Remarks

- Enormous progress during last two years !
 GZK established ; Top-Down models almost ruled out
- Need to understand
 - Energy spectrum
 - Mass composition
 - Angular distribution

consistently !

- Multi-Messengers: started by ν and γ limits if CR sources seen ⇒ verify in ν and γ telescopes
- Spectrum from 10¹⁸ to >10²⁰ eV: Ankle or Dip GZK or E_{max}?
- Need for precise mass measurements (ankle region) and for much larger experiments (trans Greisen region)
- Get prepared for charged particle astronomy @ TAUP09