

THE STATUS OF GEO 600

Stuart Reid for the GEO600 group

TAUP Sendai, Japan, 11th Sept 2007 LSC dcc no. LIGO-G070623-00-I

Illes Balears

GEO600 location

GEO600 – birds eye view

No arm cavities, but folded arms:

- High PR factor (~1000)
- High power in BS substrate (~kW)

• Very low absorption of BS substrate (< 0.25 ppm/cm)

Monolithic stages: ~100 fibre years on running IFO with ~5 partial ventings

Ultra-low mechanical loss suspensions

and Advanced VIRGO See following talk by A. Heptonstall – Development of fused silica suspension fibres for Advanced

<u>Charges on test</u> <u>masses</u>

- Measured positive charging of test masses
- Discharged by using a UV-lamp, technique first demonstrated in

LIGO-P070087-00-Z

Signal-Recycling:

- Shaping detector response trades bandwidth for sensitivity
- Complex detector (resonance conditions with detuned SR)
- GW signal is spread over both quadratures *P* and *Q*.

- 1. May 15. October, 168 days
 - Instrumental duty cycle: 94.3%
 - Science time duty cycle: 91 %
- Longest lock: 102 hours

- 1. May 15. October, 168 days
 - Instrumental duty cycle: 94.3%
 - Science time duty cycle: 91 %
- Longest lock: 102 hours

GEO Sensitivities

G e O ÍGR

G

6

17

IGR

- Low-frequency (< ~200Hz):
 - Signal recycling feedback
 - Michelson auto-alignment feedback
- Mid & high frequency (> ~200Hz):

Digital controls, ESD autoalignment, noise subtraction, ...

- Detection noise (dynamic range of photodetector)
- RF Modulation: phase noise and glitches
- Acoustics / scattered light

PD design, crystal oscillators, SMA connectors, RF power stabilization, acoustic shielding, larger optics, cleaner air, ...

Scattered Light Reduction

Acousto-Optic Phase Shifter...

- ...to suppress back-scattering from optics beyond
- Phase-modulate beam via excitation of substrate eigenmode
- Can handle large apertures and is polarization independent
- Place as first component on output beams in places where scattering cannot be avoided, e.g. photodiodes

Scattering provoked and suppressed at end station

Infrastructure Work

- New HV feedthroughs for electrostatic drives, improved ESD wiring
- Cleanroom: particle reduction by HEPA fiters in main airconditioning stream
- Debugging of mains power routing done.
 Work ongoing on balancing of currents

We are ready for a long data run

Nullstream veto Noise projection vetos

Chi² veto Statistical vetos

5

Time [h]

Typical s5 in 2006

Reduction of Glitches

Comparizon of glitchiness of LIGO /GEO /VIRGO data with coherent waveburst showed GEO glitchiness around the average of all detectors (Sept. 2006). Since then we further reduced glitches.

••

1.5

0.5

og(snr)

End of June 2007

DC Detection: A New World

- From heterodyne (AC) to homodyne (DC) detection
- Anticipated advantages:
 - Reduced modulation noise coupling (in particular important for detuned signal recycling)
 - Better sensitivity (~20 to ~40 %)
- But pay attention to:
 - Larger power noise coupling: OK, but get optical filter for LO !
 - Output mode-cleaner: Alignment to power coupling, scattering

DC-Readout without OMC

IDEA:

Turning down the RF-modulation (factor 10 is possible) Using an offset from dark fringe (of the order 50pm) Dark port dominated by carrier light

EXPERIMENT in GEO600:

IGR

- Slightly better (10-20%) sensitivity than heterodyne at high frequencies (> ~2kHz)
- Not much worse sensitivity at mid frequencies
- Power noise coupling is not terrible !

Astrowatch

- The current plan is to start 24/7 run in October 2007
- Run until Enhanced IFOs start science run (LSC: S6, ~early 2009)
- 2009 and beyond:

Sequential upgrades in the GEO-HF frame, minimizing downtime (and take science data when possible) during construction of advanced detectors

GEO-HF and the AEI Prototype

- GEO-HF is the frame for sequential upgrades of the GEO600 detector
- Topics: high-power, squeezing, DC readout, digital controls, new mirrors to lower thermal noise, ...
- A new prototype will be built at AEI-Hannover serving as a platform for different types of experiments, including testing of GEO-HF upgrades

- We have ~1 year of S5 science data
- Noise and glitch reduction, infrastructure work, detector characterization work etc. done and ongoing, ready for
- Long observation from Oct. 2007 to the end of 2008...

Even in the highest Tension, just see what happens