

Detecting Relic Neutrinos with β -decaying nuclei

Gíanpíero Mangano INFN, Sezíone dí Napolí, Italy

G. Mangano

The issue: Cosmic Neutrino Background (CvB)

G. Mangano

Summary:

•CvB as we suppose to know it

•A '62 paper by S. Weinberg and v chemical potential

•Massive neutrinos and neutrino capture on beta decaying nuclei

Clustering and v local density

•The case of ³H

Outlooks

Based on a work in collaboration with A. Cocco and M. Messina, JCAP 0706, 015 (2007), hep-ph/0703075

CvB as we suppose to know it

As photons but much earlier, neutrinos decouple from the comoving thermal bath during the expansion

neutrino decoupling: weak interactions become too weak at T ~ MeV $1 n^2$

$$f_{\nu_i}(p) = \frac{1}{2\pi^2} \frac{p^2}{e^{p/T_{\nu}} + 1}$$

$$\begin{split} T_{\nu} &= \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \approx 1.945 \ ^{\circ}K \to k_{\rm B} T_{\nu} \approx 1.68 \cdot 10^{-4} eV \\ n_{f} &= \frac{3}{4} \frac{\zeta(3)}{\pi^{2}} g_{f} T_{f}^{3} \to n_{\nu_{k}, \overline{\nu_{k}}} \approx 0.1827 \cdot T_{\nu}^{3} \approx 112 cm^{-3} \\ \Omega_{k} &= \frac{n_{\nu_{k}, \overline{\nu_{k}}} m_{k}}{\rho_{c}} \approx \frac{1}{h^{2}} \frac{m_{k}}{93.2 eV} \Longrightarrow \Omega_{\nu} h^{2} = \frac{k}{93.2 eV} \end{split}$$

G. Mangano

detailed neutrino decoupling:

small entropy release to v's from e⁺-e⁻ annihilation

- momentum dependent distortion in v distribution
- smaller photon temperature

$$(i\partial_t - Hp\partial_p)\rho = \left[\frac{M^2}{p} - \frac{8\sqrt{2}G_F}{m_W^2}E, \rho\right] + C(\rho)$$

G. Mangano

G. M. et al 2005

z=T a	δρ _e	δρ _x	N_v^{eff}
1.4	0.73%	0.52%	3.05

$$\rho_{R} = \rho_{\gamma} + \rho_{v} + \rho_{x} = \left(1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N^{eff}{}_{v}\right) \rho_{\gamma}$$

G. Mangano

Exotics

Effects seen in CMB and LSS

Extra neutrinos from out of equilibrium decay of scalars after neutrino decoupling

Neutrinos decays into scalar particles (neutrinoless Universe)

$\Phi \to \nu \overline{\nu} \qquad \nu \to \nu \Phi$

$$f_a(y) = y^2 \frac{1}{e^y + 1} + \pi^2 \frac{A}{\sqrt{2\pi\sigma^2}} e^{-(y - y_*)^2/2\sigma^2}$$

G. Mangano

Bounds from BBN Φ particles (decoupled) should not contribute too much to the expansion rate H

Cuoco, Lesgourgues, G.M. and Pastor 2005

Beacom, Bell and Dodelson 2004 Bell, Pierpaoli and Sigurdson 2005 Hannestad 2005

Neutrino decay: bounds from LSS...

G. Mangano

CvB: very low energy, difficult to measure directly by v-scattering

- Large De Broglie wavelength λ~0.1 cm
 Coherent scattering over macroscopic domain
 Wind force on a test body, acceleration ~ 10⁻²⁸ cm² s⁻¹
 Today: Cavendish torsion balances can test acceleration as small as 10⁻¹³ cm² s⁻¹ !!
- 2. Accelerators:

$$\sigma(vp) = G_F^2 s / \pi = 10^{-44} (m_v / eV) (E / TeV) cm^2$$

Too small even at LHC or beyond !

G. Mangano

A '62 paper by S. Weinberg and v chemical potential

PHYSICAL REVIEW

VOLUME 128, NUMBER 3

NOVEMBER 1, 1962

Universal Neutrino Degeneracy

STEVEN WEINBERG* Imperial College of Science and Technology, London, England (Received March 22, 1962)

FIG. 1. Shape of the upper end of an allowed Kurie plot to be expected in a β^+ decay if neutrinos are degenerate up to energy E_F , or in a β^- decay if antineutrinos are degenerate.

FIG. 2. Shape of the upper end of an allowed Kurie plot to be expected in a β^- decay if neutrinos are degenerate up to energy E_F , or in a β^+ decay if antineutrinos are degenerate.

Neutrino-antineutrino asymmetry ($\xi=\mu/T_v$, E_F(ξ)) strongly constrained by Big Bang Nucleosynthesis

1) chemical potentials contribute to neutrino energy density $\pi^{-2} \left(20\pi^2 - 15\pi^4 \right)$

$$\rho_{\nu} = \frac{7\pi^2}{120} \left(3 + \sum_{i} \left(\frac{30\xi_i^2}{7\pi^2} + \frac{15\xi_i^4}{7\pi^4} \right) + \dots \right) T_{\nu}^4$$

 a positive electron neutrino chemical potential (more neutrinos than antineutrinos) favour n → p processes with respect to p →n processes.

Change the ⁴He abundance!

Though different neutrino flavor may have different chemical potentials, they however mix under oscillations

G. Mangano

Massive neutrinos and neutrino capture on beta decaying nuclei (NC β)

Weinberg: if neutrinos are degenerate we could observe structures around the beta decaying nuclei endpoint Q

v's are NOT degenerate but are massive!

Neutrino masses A.Marrone, IFAE 2007 3v oscillation parameter constraints **Oscillation Parameters** -Die 5 number **Terrestrial bounds** Δm² (10⁻³ eV²) 7 8 9 10 ðm² (10^{-*} eV²) aigma $\delta m^2 = 7.92(1 \pm 0.09) \times 10^{-5} \text{ eV}^2$ v_e <2 eV (³H decay) đ number $\sin^2 \theta_{12} = 0.314(1^{+0.18}_{-0.15})$ v_{μ} <0.19 MeV (pion decays) sin²19₁₂ sin²1/₂₃ 3ν oscillation parameter bounds on ϑ . v_{τ} <18.2 MeV (τ decays) $\Delta m^2 = 2.6(1^{+0.14}_{-0.15}) \times 10^{-3} \text{ eV}^2$ of sigma $\sin^2 \theta_{23} = 0.45(1^{+0.35}_{-0.20})$ number Cosmology $\sin^2 \theta_{13} = 0.8(1^{+2.3}_{-0.8}) \times 10^{-2}$ 0.02 0.04 0.06 0.08 0.1 Bounds on $\Sigma_i m_i$ sin² 🖓 🗤

Case	Cosmological data set	Σ bound (2 σ)
1	WMAP	< 2.3 eV
2	WMAP + SDSS	$< 1.2 \ {\rm eV}$
3	$WMAP + SDSS + SN_{Riess} + HST + BBN$	$< 0.78 \ \mathrm{eV}$
4	$ m CMB + LSS + SN_{Astier}$	$< 0.75 \ \mathrm{eV}$
5	$CMB + LSS + SN_{Astier} + BAO$	$< 0.58 \ \mathrm{eV}$
6	$CMB + LSS + SN_{Astier} + Ly-\alpha$	$< 0.21 \ \mathrm{eV}$
7	$CMB + LSS + SN_{Astier} + BAO + Ly-\alpha$	$< 0.17 \ \mathrm{eV}$

Issues:

1. Rates

$$\begin{split} \lambda_{\nu} &= \int \sigma_{\rm \scriptscriptstyle NCB} v_{\nu} \, f(p_{\nu}) \, \frac{d^3 p_{\nu}}{(2\pi)^3} \,, \ = \frac{G_{\beta}^2}{2\pi^3} \int_{W_o + 2m_{\nu}}^{\infty} p_e E_e F(Z, E_e) C(E_e, p_{\nu})_{\nu} \\ &\quad \cdot E_{\nu} p_{\nu} \, f(p_{\nu}) \, dE_e \,, \end{split}$$

$$\lambda_{\beta} = \frac{G_{\beta}^2}{2\pi^3} \int_{m_e}^{W_o} p_e E_e F(Z, E_e) C(E_e, p_{\nu})_{\beta} E_{\nu} p_{\nu} \, dE_e \,,$$

Nuclear form factors (shape factors) uncertainties: use beta observables

$$\mathcal{A} = \int_{m_e}^{W_o} \frac{C(E'_e, p'_\nu)_\beta}{C(E_e, p_\nu)_\nu} \frac{p'_e}{p_e} \frac{E'_e}{E_e} \frac{F(E'_e, Z)}{F(E_e, Z)} E'_\nu p'_\nu dE'_e$$
$$\sigma_{\rm NCB} v_\nu = \frac{2\pi^2 \ln 2}{\mathcal{A} t_{1/2}}$$

G. Mangano

• Super-allowed transitions

$$\sigma_{\rm NCB} v_{\nu} = 2\pi^2 \ln 2 \frac{p_e E_e F(Z, E_e)}{f t_{1/2}}$$

- This is a very good approximation also for allowed transitions since $\frac{C(E_e, p_\nu)_\beta}{C(E_e, p_\nu)_\nu} \simeq 1$
- *i-th* unique forbidden

$$C(E_e, p_{\nu})^i_{\beta} = \left[\frac{R^i}{(2i+1)!!}\right]^2 |{}^{A}F^{(0)}_{(i+1)\,i\,1}|^2 u_i(p_e, p_{\nu})$$
$$\mathcal{A}_i = \int_{m_e}^{W_o} \frac{u_i(p'_e, p'_{\nu})p'_e E'_e F(Z, E'_e)}{u_i(p_e, p_{\nu})p_e E_e F(Z, E_e)} E'_{\nu}p'_{\nu} dE'_e$$

G. Mangano

Cross sections times v, as high as 10⁻⁴¹ cm² c

Table 1. The product $\sigma_{\text{NCB}}(v_{\nu}/c)$ for the best known superallowed $0^+ \rightarrow 0^+$ transitions. Numerical values for Q_{β} and partial half-lifes are taken from [33]. The value of f is calculated adopting the parametrization of the Fermi function of [28].

Isotope	$Q_{\beta} \; (\mathrm{keV})$	Half-life (sec)	$\sigma_{\rm NCB}(v_{\nu}/c)~(10^{-41}~{\rm cm}^2)$
¹⁰ C	885.87	1320.99	5.36×10^{-3}
^{14}O	1891.8	71.152	$1.49 imes 10^{-2}$
^{26m}Al	3210.55	6.3502	$3.54 imes 10^{-2}$
^{34}Cl	4469.78	1.5280	$5.90 imes10^{-2}$
$^{38\mathrm{m}}\mathrm{K}$	5022.4	0.92512	$7.03 imes 10^{-2}$
^{42}Sc	5403.63	0.68143	$7.76 imes10^{-2}$
^{46}V	6028.71	0.42299	$9.17 imes10^{-2}$
^{50}Mn	6610.43	0.28371	$1.05 imes 10^{-1}$
$^{54}\mathrm{Co}$	7220.6	0.19350	1.20×10^{-1}

Table 2. Beta decaying nuclei that present the largest product of $\sigma_{\rm NCB}(v_{\nu}/c)$	$t_{1/2}$ for
low neutrino momentum and have a β^{\pm} decay branching fraction larger than	80%.

Isotope	Decay	$Q_{\beta} \; (\mathrm{keV})$	Half-life (sec)	$\sigma_{\rm NCB}(v_{\nu}/c)~(10^{-41}~{\rm cm}^2)$
³ H	β^{-}	18.591	3.8878×10^8	$7.84 imes 10^{-4}$
⁶³ Ni	β^{-}	66.945	$3.1588 imes 10^9$	1.38×10^{-6}
$^{93}\mathrm{Zr}$	β^{-}	60.63	$4.952 imes10^{13}$	2.39×10^{-10}
106 Ru	β^{-}	39.4	$3.2278 imes 10^7$	$5.88 imes 10^{-4}$
$^{107}\mathrm{Pd}$	β^{-}	33	2.0512×10^{14}	2.58×10^{-10}
$^{187}\mathrm{Re}$	β^{-}	2.64	1.3727×10^{18}	4.32×10^{-11}
^{11}C	β^+	960.2	$1.226 imes 10^3$	4.66×10^{-3}
^{13}N	β^+	1198.5	$5.99 imes 10^2$	5.3×10^{-3}
$^{15}\mathrm{O}$	β^+	1732	$1.224 imes 10^2$	$9.75 imes 10^{-3}$
$^{18}\mathrm{F}$	β^+	633.5	$6.809 imes 10^3$	2.63×10^{-3}
22 Na	β^+	545.6	$9.07 imes 10^7$	$3.04 imes 10^{-7}$
$^{45}\mathrm{Ti}$	β^+	1040.4	$1.307 imes 10^4$	3.87×10^{-4}

A. Cocco, G.M. and M. Messina 2007

G. Mangano

G. Mangano

Beta decaying nuclei having BR(β^{\pm}) > 5 % selected from 14543 decays listed in the ENSDF database

signal/background >1

$$\frac{9}{2}\zeta(3)\left(\frac{T_{\nu}}{\Delta}\right)^{3}\frac{1}{\left(1+2m_{\nu}/\Delta\right)^{3/2}\rho} \ge 1\,, \qquad \rho = \frac{1}{\sqrt{2\pi}}\int_{2m_{\nu}/\Delta-1/2}^{2m_{\nu}/\Delta+1/2}e^{-x^{2}/2}dx\,.$$

It works for $\Delta < m_v$

G. Mangano

•Clustering and *v* local density

Massive neutrinos cluster on CDM and baryonic structures. The local density at Earth (8 kpc away from the galactic center) is expected to be larger than 56 cm⁻³

$$\begin{split} &\frac{\partial f_i}{\partial \tau} + \frac{p}{am_i} \cdot \frac{\partial f_i}{\partial x} - am_i \nabla \phi \cdot \frac{\partial f_i}{\partial p} = 0, \\ &\nabla^2 \phi = 4\pi G a^2 \sum_i \overline{\rho}_i(\tau) \delta_i(x,\tau), \\ &\delta_i(x,\tau) \equiv \frac{\rho_i(x,\tau)}{\overline{\rho}_i(\tau)} - 1, \qquad \rho_i(x,\tau) = \frac{m_i}{a^3} \int d^3p \ f_i(x,p,\tau), \end{split}$$

Neutrinos accrete when their velocity becomes comparable with protocluster velocity dispersion (z<2) Usual assumption: Halo profile governed by CDM only NFW universal profile

$$\rho_{\rm halo}(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2},$$

G. Mangano

The case of ³H

$$\lambda_{\beta} = 2.85 \cdot 10^{-2} \frac{\sigma_{\rm NCB} v_{\nu} / c}{10^{-45} {\rm cm}^2} \,{\rm yr}^{-1} \,\,{\rm mol}^{-1} \,. \quad \sigma_{\rm NCB} (^3{\rm H}) \frac{v_{\nu}}{c} = (7.84 \pm 0.03) \times 10^{-45} \,\,{\rm cm}^2 \,,$$

$m_{\nu}~(\mathrm{eV})$	FD (events yrs^{-1})	NFW (events yrs^{-1})	MW (events yrs^{-1})
0.6	7.5	90	150
0.3	7.5	23	33
0.15	7.5	10	12

The number of NCB events per year for 100 g of ${}^{3}H$

8 events yr⁻¹ per 100g of ³H (no clustering) up to 10² events yr⁻¹ per 100 g of ³H due to clustering effect signal/background = 3 for Δ =0.2 eV if m_v=0.7 eV Δ =0.1 eV if m_v=0.3 eV

Outlooks

Relic neutrinos and NC $\!\beta$

•neutrino mass scale?

•NC β : high rates, but detection only for quasi degenerate mass scale (m_v > 0.1 - 0.2 eV);

•other background rejection methods? More careful analysis of kinematics (daughter nucleus recoil, polarized nuclei which de-excite via gamma emission,...);

•look for the best nucleus; other processes?

•other low energy neutrino fluxes: thermal v's from the Sun, diffused flux, old stars (POP III),...