Low Energy Dirac and Majorana Leptonic CP-Violation and Leptogenesis

S. T. Petcov

SISSA/INFN, Trieste, Italy, and INRNE, Bulgarian Academy of Sciences, Sofia, Bulgaria

> TAUP 2007 Sendai, Japan September 12, 2007

Low Energy Leptonic CPV and Leptogenesis: Summary

```
Leptogenesis: see-saw mechanism; N_j - heavy RH \nu's; N_j, \nu_k - Majorana particles
```

 N_j : $M_1 \ll M_2 \ll M_3$

The observed value of the baryon asymmetry of the Universe can be generated

A. CP-violation due to the Dirac phase δ in U_{PMNS} , no other sources of CPV (Majorana phases in U_{PMNS} equal to 0, etc.); requires $M_1 \gtrsim 10^{11}$ GeV.

```
m_1 \ll m_2 \ll m_3 (NH):
```

```
|\sin 	heta_{13} \sin \delta| \gtrsim 0.09, \sin 	heta_{13} \gtrsim 0.09; |J_{CP}| \gtrsim 2.0 \times 10^{-2}
```

 $m_3 \ll m_1 < m_2$ (IH):

```
|\sin 	heta_{13} \sin \delta| \gtrsim 0.02, \sin 	heta_{13} \gtrsim 0.02; |J_{CP}| \gtrsim 4.6 	imes 10^{-3}
```

B. CP-violation due to the Majorana phases in U_{PMNS} , no other sources of CPV (Dirac phase in U_{PMNS} equal to 0, etc.); requires $M_1 \gtrsim 3.5 \times 10^{10}$ GeV.

C. CP-violation due to both Dirac and Majorana phases in U_{PMNS} .

D. Y_B can depend non-trivially on min $(m_j) \sim (10^{-5} - 10^{-2})$ eV. S. Pascoli, S.T.P., A. Riotto, 2006 (A-C); E. Molinaro, S.T.P., T. Shindou, Y. Takanishi, 2007 (D). Compelling Evidences for ν -Oscillations:

$$\nu_{l\perp} = \sum_{j=1}^{3} U_{lj} \nu_{j\perp} \qquad l = e, \mu, \tau.$$

B. Pontecorvo, 1957; 1958; 1967;Z. Maki, M. Nakagawa, S. Sakata, 1962;

Three Neutrino Mixing

$$\nu_{l\perp} = \sum_{j=1}^{3} U_{lj} \, \nu_{j\perp} \; .$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix,

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

• $U - n \times n$ unitary:

n 2 3 4 mixing angles: $\frac{1}{2}n(n-1)$ 1 3 6

CP-violating phases:

- ν_j Dirac: $\frac{1}{2}(n-1)(n-2) = 0 = 1 = 3$
- ν_j Majorana: $\frac{1}{2}n(n-1)$ 1 3 6

n = 3: 1 Dirac and

2 additional CP-violating phases, Majorana phases

S.M. Bilenky, J. Hosek, S.T.P.,1980; J. Schechter, J.W.F. Valle,1980; M. Doi, T. Kotani, E. Takasugi,1981

PMNS Matrix: Standard Parametrization

$$U = V \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

- $s_{ij} \equiv \sin \theta_{ij}$, $c_{ij} \equiv \cos \theta_{ij}$, $\theta_{ij} = [0, \frac{\pi}{2}]$,
- δ Dirac CP-violation phase, $\delta = [0, 2\pi]$,
- α_{21} , α_{31} the two Majorana CP-violation phases.
- $\Delta m_{\odot}^2 \equiv \Delta m_{21}^2 \cong 8.0 \times 10^{-5} \text{ eV}^2 > 0$, $\sin^2 \theta_{12} \cong 0.30$, $\cos 2\theta_{12} \gtrsim 0.28$ (2 σ),
- $|\Delta m^2_{\rm atm}| \equiv |\Delta m^2_{31}| \cong 2.5 \times 10^{-3} \ {\rm eV^2}$, $\sin^2 2\theta_{23} \cong 1$,
- θ_{13} the CHOOZ angle: $\sin^2 \theta_{13} < 0.027 (0.041) 2\sigma (3\sigma)$. A.Bandyopadhyay, S.Choubey, S.Goswami, S.T.P., D.P.Roy, hep-ph/0406328 (updated) T. Schwetz, hep-ph/0606060; G.F. Fogli et al., 2006.

• $sgn(\Delta m_{atm}^2) = sgn(\Delta m_{31}^2)$ not determined

 $\Delta m_{\rm atm}^2 \equiv \Delta m_{31}^2 > 0$, normal mass ordering $\Delta m_{\rm atm}^2 \equiv \Delta m_{32}^2 < 0$, inverted mass ordering

Convention: $m_1 < m_2 < m_3$ - NMO, $m_3 < m_1 < m_2$ - IMO

$$m_1 \ll m_2 \ll m_3,$$
 NH,
 $m_3 \ll m_1 < m_2,$ IH,
 $m_1 \cong m_2 \cong m_3, \ m_{1,2,3}^2 >> \Delta m_{atm}^2,$ QD; $m_j \gtrsim 0.10$ eV.

• Majorana phases α_{21} , α_{31} :

 $- \nu_l \leftrightarrow \nu_{l'}, \, \overline{\nu}_l \leftrightarrow \overline{\nu}_{l'}$ not sensitive;

S.M. Bilenky, J. Hosek, S.T.P., 1980; P. Langacker, S.T.P., G. Steigman, S. Toshev, 1987

 $-|<\!m>|$ in $(\beta\beta)_{0
u}$ -decay depends on $lpha_{21}$, $lpha_{31}$;

 $-\Gamma(\mu \rightarrow e + \gamma)$ etc. in SUSY theories depend on $\alpha_{21,31}$;

– BAU, leptogenesis scenario: $\alpha_{21,31}$!

Future Progress

- Determination of the nature Dirac or Majorana, of u_j .
- Determination of sgn($\Delta m^2_{\rm atm}$), type of $\nu-$ mass spectrum

 $m_1 \ll m_2 \ll m_3,$ NH, $m_3 \ll m_1 < m_2,$ IH, $m_1 \cong m_2 \cong m_3, \ m_{1,2,3}^2 >> \Delta m_{atm}^2, \ QD; \ m_j \gtrsim 0.10 \text{ eV}.$

- Determining, or obtaining significant constraints on, the absolute scale of ν_{j} -masses, or min (m_{j}) .
- Status of the CP-symmetry in the lepton sector: violated due to δ (Dirac), and/or due to α_{21} , α_{31} (Majorana)?
- High precision determination of Δm_{\odot}^2 , θ_{\odot} , $\Delta m_{\rm atm}^2$, θ_{atm} .
- Measurement of, or improving by at least a factor of (5 10) the existing upper limit on, $\sin^2 \theta_{13}$.

• Searching for possible manifestations, other than ν_l -oscillations, of the nonconservation of L_l , $l = e, \mu, \tau$, such as $\mu \to e + \gamma$, $\tau \to \mu + \gamma$, etc. decays. • Understanding at fundamental level the mechanism giving rise to the ν - masses and mixing and to the L_l -non-conservation. Includes understanding

– the origin of the observed patterns of ν -mixing and ν -masses ;

– the physical origin of CPV phases in U_{PMNS} ;

– Are the observed patterns of ν -mixing and of $\Delta m^2_{21,31}$ related to the existence of a new symmetry?

- Is there any relations between q-mixing and ν -mixing? Is $\theta_{12} + \theta_c = \pi/4$?

- Is $\theta_{23} = \pi/4$, or $\theta_{23} > \pi/4$ or else $\theta_{23} < \pi/4$?

- Is there any correlation between the values of CPV phases and of mixing angles in U_{PMNS} ?

• Progress in the theory of ν -mixing might lead to a better understanding of the origin of the BAU.

– Can the Majorana and/or Dirac CPVP in U_{PMNS} be the leptogenesis CPV parameters at the origin of BAU?

Rephasing Invariants Associated with CPVP

Dirac phase δ :

$$J_{CP} = \operatorname{Im} \left\{ U_{e1} U_{\mu 2} U_{e2}^* U_{\mu 1}^* \right\} .$$

C. Jarlskog, 1985 (for quarks)

CP-, T- violation effects in neutrino oscillations

P. Krastev, S.T.P., 1988

Majorana phases α_{21} , α_{31} :

$$\begin{split} S_1 &= \operatorname{Im} \{ U_{e1} U_{e3}^* \}, \quad S_2 &= \operatorname{Im} \{ U_{e2} U_{e3}^* \} \quad (\text{not unique}); \quad \text{or} \\ S_1' &= \operatorname{Im} \{ U_{\tau 1} U_{\tau 2}^* \}, \quad S_2' &= \operatorname{Im} \{ U_{\tau 2} U_{\tau 3}^* \} \\ & \text{J.F. Nieves and P. Pal, 1987, 2001} \\ & \text{G.C. Branco et al., 1986} \end{split}$$

J.A. Aguilar-Saavedra and G.C. Branco, 2000

CP-violation: both Im $\{U_{e1}U_{e3}^*\} \neq 0$ and Re $\{U_{e1}U_{e3}^*\} \neq 0$.

- S_1 , S_2 appear in | < m > | in $(\beta \beta)_{0\nu}$ -decay.
- In general, J_{CP} , S_1 and S_2 are independent.

Dirac CP-Nonconservation: δ in U_{PMNS}

Observable manifestations in

$$\nu_l \leftrightarrow \nu_{l'}, \quad \bar{\nu}_l \leftrightarrow \bar{\nu}_{l'}, \quad l, l' = e, \mu, \tau$$

• not sensitive to Majorana CPVP α_{21} , α_{31} CP-invariance:

$$N.$$
 Cabibbo, 1978
S.M. Bilenky, J. Hosek, S.T.P.,1980;
 $P(\nu_l \rightarrow \nu_{l'}) = P(\bar{\nu}_l \rightarrow \bar{\nu}_{l'}) , \quad l \neq l' = e, \mu, \tau$
 $V.$ Barger et al.,1980.

CPT-invariance:

$$P(
u_l \rightarrow
u_{l'}) = P(\bar{
u}_{l'} \rightarrow \bar{
u}_{l})$$

 $l = l': P(
u_l \rightarrow
u_l) = P(\bar{
u}_l \rightarrow \bar{
u}_{l})$

T-invariance:

$$P(\nu_l \rightarrow \nu_{l'}) = P(\nu_{l'} \rightarrow \nu_l), \ l \neq l'$$

 3ν – mixing:

$$A_{\mathsf{CP}}^{(l,l')} \equiv P(\nu_l \to \nu_{l'}) - P(\bar{\nu}_l \to \bar{\nu}_{l'}) \ , \ l \neq l' = e, \mu, \tau$$

$$A_{\mathsf{T}}^{(l,l')} \equiv P(\nu_l \to \nu_{l'}) - P(\nu_{l'} \to \nu_l), \ l \neq l'$$
$$A_{\mathsf{T}}^{(e,\mu)} = A_{\mathsf{T}}^{(\mu,\tau)} = -A_{\mathsf{T}}^{(e,\tau)}$$

P.I. Krastev, S.T.P., 1988

In vacuum:

$$A_{T}^{(e,\mu)} = J_{CP} F_{osc}^{vac}$$

$$J_{CP} = \text{Im} \left\{ U_{e1} U_{\mu 2} U_{e2}^{*} U_{\mu 1}^{*} \right\} = \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$$

$$F_{osc}^{vac} = \sin(\frac{\Delta m_{21}^{2}}{2E}L) + \sin(\frac{\Delta m_{32}^{2}}{2E}L) + \sin(\frac{\Delta m_{13}^{2}}{2E}L)$$

In matter: Matter effects violate

 $\mathsf{CP}: \qquad P(\nu_l \to \nu_{l'}) \neq P(\bar{\nu}_l \to \bar{\nu}_{l'})$

CPT:
$$P(\nu_l \rightarrow \nu_{l'}) \neq P(\bar{\nu}_{l'} \rightarrow \bar{\nu}_{l})$$

P. Langacker et al., 1987

P.I. Krastev, S.T.P., 1988

Can conserve the T-invariance (Earth)

$$P(
u_l
ightarrow
u_{l'}) = P(
u_{l'}
ightarrow
u_l), \ l
eq l'$$

In matter with constant density: $A_T^{(e,\mu)} = J_{CP}^{mat} F_{osc}^{mat}$

 $J_{CP}^{mat} = J_{CP}^{vac} R_{CP}$ R_{CP} does not depend on θ_{23} and δ ; $|R_{CP}| \lesssim 2.5$

P.I. Krastev, S.T.P., 1988

HOW?

- Reactor Experiments $\sim 2 \text{ km}$ $\sin 2\theta_{13}$
- Super Beams: θ_{13} , δ , ...

JHF (T2K), SK (HK) 295 km

NuMI (NO ν A) ~800 km

SPL+ β -beams, UNO (1 megaton): CERN-Frejus ~140 km ν -Factories ~ 3000, 7000 km If ν_j - Majorana particles, U_{PMNS} contains (3- ν mixing) δ -Dirac, α_{21} , α_{31} - Majorana physical CPV phases ν -oscillations $\nu_l \leftrightarrow \nu_{l'}$, $\bar{\nu}_l \leftrightarrow \bar{\nu}_{l'}$, $l, l' = e, \mu, \tau$, • are not sensitive to the nature of ν_j ,

S.M. Bilenky et al.,1980; P. Langacker et al., 1987

• provide information on $\Delta m_{jk}^2 = m_j^2 - m_k^2$, but not on the absolute values of ν_j masses.

The Majorana nature of ν_j can manifest itself in the existence of $\Delta L = \pm 2$ processes:

$$K^+ \to \pi^- + \mu^+ + \mu^+$$

 $\mu^- + (A, Z) \to \mu^+ + (A, Z - 2)$

The process most sensitive to the possible Majorana nature of ν_j - $(\beta\beta)_{0\nu}\text{-}$ decay

$$(A, Z) \to (A, Z + 2) + e^{-} + e^{-}$$

of even-even nuclei, ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd.

2n from (A,Z) exchange a virtual Majorana ν_j (via the CC weak interaction) and transform into 2p of (A,Z+2) and two free e^- .

strong in-medium modification of the basic process $dd \rightarrow uue^-e^-(\bar{v}_e\bar{v}_e)$

virtual excitation of states of all multipolarities in (A,Z+1) nucleus

(A,Z+2)

V. Rodin, talk at Gran Sasso, 2006

$(\beta\beta)_{0\nu}$ -Decay Experiments:

- Majorana nature of u_j
- Type of ν -mass spectrum (NH, IH, QD)
- Absolute neutrino mass scale
- ³H β -decay , cosmology: m_{ν} (QD, IH)
 - CPV due to Majorana CPV phases

 ν_j – Dirac or Majorana particles, fundamental problem

 ν_j -Dirac: conserved lepton charge exists, $L = L_e + L_\mu + L_\tau$, $\nu_j \neq \bar{\nu}_j$

 u_j -Majorana: no lepton charge is exactly conserved, $u_j \equiv \overline{
u}_j$

The observed patterns of ν -mixing and of $\Delta m_{\rm atm}^2$ and Δm_{\odot}^2 can be related to Majorana ν_j and an approximate symmetry:

$$L' = L_e - L_\mu - L_\tau$$

S.T.P., 1982

See-saw mechanism: u_j – Majorana

Establishing that ν_j are Majorana particles would be as important as the discovery of ν - oscillations.

$$\begin{split} A(\beta\beta)_{0\nu} &\sim < m > \mathsf{M}(\mathsf{A},\mathsf{Z}), \qquad \mathsf{M}(\mathsf{A},\mathsf{Z}) - \mathsf{NME}, \\ || = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 \ e^{i\alpha_{21}} + m_3|U_{e3}|^2 \ e^{i\alpha_{31}}| \\ &= |m_1 \ c_{12}^2 \ c_{13}^2 + m_2 \ s_{12}^2 \ c_{13}^2 \ e^{i\alpha_{21}} + m_3 \ s_{13}^2 \ e^{i\alpha_{31}}|, \quad \theta_{12} \equiv \theta_{\odot}, \ \theta_{13} - \mathsf{CHOOZ} \end{split}$$

 α_{21} , α_{31} - the two Majorana CPVP of the PMNS matrix.

CP-invariance: $\alpha_{21} = 0, \pm \pi, \ \alpha_{31} = 0, \pm \pi;$

$$\eta_{21} \equiv e^{i\alpha_{21}} = \pm 1, \quad \eta_{31} \equiv e^{i\alpha_{31}} = \pm 1$$

relative CP-parities of ν_1 and $\nu_2,$ and of ν_1 and ν_3 .

L. Wolfenstein, 1981;

S.M. Bilenky, N. Nedelcheva, S.T.P., 1984;

B. Kayser, 1984.

$$|\!<\!m\!>|$$
 : m_j , $heta_\odot\equiv heta_{12}$, $heta_{13}$, $lpha_{21,31}$

 $m_{
m 1,2,3}$ - in terms of $\min(m_j)$, $\Delta m^2_{
m atm}$, Δm^2_{\odot}

S.T.P., A.Yu. Smirnov, 1994

Convention: $m_1 < m_2 < m_3$ - NMO, $m_3 < m_1 < m_2$ - IMO

$$\Delta m_{\odot}^2 \equiv \Delta m_{21}^2, \quad m_2 = \sqrt{m_1^2 + \Delta m_{\odot}^2}$$

while either

$$\Delta m_{\rm atm}^2 \equiv \Delta m_{31}^2 > 0$$
, $m_3 = \sqrt{m_1^2 + \Delta m_{\rm atm}^2}$, normal mass ordering, or

 $\Delta m_{\rm atm}^2 \equiv \Delta m_{32}^2 < 0, \quad m_1 = \sqrt{m_3^2 + |\Delta m_{\rm atm}^2| - \Delta m_{\odot}^2}, \quad \text{inverted mass ordering}$

The neutrino mass spectrum –

Normal hierarchical (NH) if $m_1 \ll m_2 \ll m_3$,

Inverted hierarchical (IH) if $m_3 \ll m_1 \cong m_2$,

Quasi-degenerate (QD) if $m_1 \cong m_2 \cong m_3 = m$, $m_j^2 >> |\Delta m_{atm}^2|$; $m_j \gtrsim 0.1 \text{ eV}$

Given $|\Delta m^2_{\rm atm}|$, Δm^2_{\odot} , θ_{\odot} , θ_{13} ,

|<m>| = |<m>| (m_{min}, α_{21} , α_{31} ; S), S = NO(NH), IO(IH).

$$\begin{split} A(\beta\beta)_{0\nu} &\sim < m > \mathsf{M}(\mathsf{A},\mathsf{Z}), \qquad \mathsf{M}(\mathsf{A},\mathsf{Z}) - \mathsf{NME}, \\ || &\cong \left| \sqrt{\Delta m_{\odot}^{2}} \sin^{2}\theta_{12}e^{i\alpha} + \sqrt{\Delta m_{31}^{2}} \sin^{2}\theta_{13}e^{i\beta} \right|, \ m_{1} \ll m_{2} \ll m_{3} \ (\mathsf{NH}), \\ || &\cong \sqrt{m_{3}^{2} + \Delta m_{13}^{2}} \left| \cos^{2}\theta_{12} + e^{i\alpha} \sin^{2}\theta_{12} \right|, \ m_{3} < (\ll)m_{1} < m_{2} \ (\mathsf{IH}), \\ || &\simeq m \left| \cos^{2}\theta_{12} + e^{i\alpha} \sin^{2}\theta_{12} \right|, \ m_{1,2,3} \cong m \gtrsim 0.10 \ \mathsf{eV} \ (\mathsf{QD}), \\ \theta_{12} \equiv \theta_{\odot}, \ \theta_{13} - \mathsf{CHOOZ}; \ \alpha \equiv \alpha_{21}, \ \beta \equiv \alpha_{31} - 2\delta. \end{split}$$

CP-invariance: $\alpha = 0, \pm \pi$, $\beta = 0, \pm \pi$;

$$\begin{split} |<\!m\!>| &\lesssim 5 \times 10^{-3} \text{ eV, NH}; \ \sqrt{\Delta m_{13}^2} \cos 2 heta_{12} \cong 0.013 \text{ eV} \lesssim |<\!m\!>| &\lesssim \sqrt{\Delta m_{13}^2} \cong 0.055 \text{ eV}, \quad \text{IH}; \ m \cos 2 heta_{12} \lesssim |<\!m\!>| &\lesssim m, \ m \gtrsim 0.10 \text{ eV}, \quad \text{QD}. \end{split}$$

Best sensitivity: Heidelberg-Moscow ⁷⁶Ge experiment.

- Claim for a positive signal at $> 3\sigma$:
- H. Klapdor-Kleingrothaus et al., PL B586 (2004),

```
|\langle m \rangle| = (0.1 - 0.9) \text{ eV} (99.73\% \text{ C.L.}).
```

```
IGEX <sup>76</sup>Ge: |<m>| < (0.33 - 1.35) eV (90% C.L.).
```

Taking data - NEMO3 (100 Mo), CUORICINO (130 Te):

|<m>| <(0.7-1.2) eV, |<m>| <(0.18-0.90) eV (90% C.L.).

Large number of projects: $| < m > | \sim (0.01 - 0.05)$ eV

```
CUORE - {}^{130}Te,
GERDA - {}^{76}Ge,
SuperNEMO - {}^{82}Se,
EXO - {}^{136}Xe,
MAJORANA - {}^{76}Ge,
MOON - {}^{100}Mo,
CANDLES - {}^{48}Ca,
XMASS - {}^{136}Xe.
```


S. Pascoli, S.T.P., 2006

The current 2σ ranges of values of the parameters used.

 $\begin{aligned} \sin^2\theta_{13} &= 0.015 \pm 0.006; \ 1\sigma(\Delta m_{\odot}^2) = 4\%, \ 1\sigma(\sin^2\theta_{\odot}) = 4\%, \ 1\sigma(|\Delta m_{\rm atm}^2|) = 6\%; \\ 2\sigma(|<\!m\!>\!| \) \text{ used}. \end{aligned}$

Majorana CPV Phases and | < m > |

- CPV can be established provided
- $|\!<\!m\!>|$ measured with Δ \lesssim 15% ;
- $\Delta m^2_{\rm atm}$ (IH) or m_0 (QD) measured with $\delta \lesssim$ 10% ;

- $\xi \lesssim$ 1.5 ;

- α_{21} (QD): in the interval $\sim [\frac{\pi}{4} - \frac{3\pi}{4}]$, or $\sim [\frac{5\pi}{4} - \frac{3\pi}{2}]$;

- tan $^2 heta_\odot\gtrsim$ 0.40 .

S. Pascoli, S.T.P., W. Rodejohann, 2002

S. Pascoli, S.T.P., L. Wolfenstein, 2002

S. Pascoli, S.T.P., T. Schwetz, hep-ph/0505226

No "No-go for detecting CP-Violation via $(\beta\beta)_{0\nu}$ -decay"

V. Barger *et al.*, 2002

Absolute Neutrino Mass Measurements

The Troitzk and Mainz ³H β -decay experiments

 $m_{
u_e} < 2.3 \text{ eV}$ (95% C.L.)

There are prospects to reach sensitivity

KATRIN : $m_{\nu_e} \sim 0.2 \text{ eV}$

Cosmological and astrophysical data: the WMAP result combined with data from large scale structure surveys (2dFGRS, SDSS)

$$\sum_j m_j \equiv \Sigma < (0.4 - 1.7) \,\, {
m eV}$$

The WMAP and future PLANCK experiments can be sensitive to

$$\sum_j m_j \cong 0.4 \text{ eV}$$

Data on weak lensing of galaxies by large scale structure, combined with data from the WMAP and PLANCK experiments may allow to determine

$$\sum_j m_j$$
: $\delta \cong 0.04$ eV.

M_{ν} from the See-Saw Mechanism

P. Minkowski, 1977. M. Gell-Mann, P. Ramond, R. Slansky, 1979;

T. Yanagida, 1979;

R. Mohapatra, G. Senjanovic, 1980.

• Explains the smallness of ν -masses.

• Through leptogenesis theory links the ν -mass generation to the generation of baryon asymmetry of the Universe Y_B .

S. Fukugita, T. Yanagida, 1986.

• In SUSY GUT's with see-saw mechanism of ν -mass generation, the LFV decays

 $\mu \rightarrow e + \gamma, \quad \tau \rightarrow \mu + \gamma, \quad \tau \rightarrow e + \gamma \ , \ \text{etc.}$

are predicted to take place with rates within the reach of present and future experiments.

F. Borzumati, A. Masiero, 1986.

• The ν_j are Majorana particles; $(\beta\beta)_{0\nu}$ -decay is allowed.

See-Saw: Dirac ν -mass m_D + Majorana mass M_R for N_R

The See-Saw Lagrangian

$$\mathcal{L}^{\text{lep}}(x) = \mathcal{L}_{\text{CC}}(x) + \mathcal{L}_{\text{Y}}(x) + \mathcal{L}_{\text{M}}^{\text{N}}(x),$$

$$\mathcal{L}_{\text{CC}} = -\frac{g}{\sqrt{2}} \overline{l_L}(x) \gamma_{\alpha} \nu_{lL}(x) W^{\alpha \dagger}(x) + h.c.,$$

$$\mathcal{L}_{\text{Y}}(x) = \lambda_{il} \overline{N_{iR}}(x) H^{\dagger}(x) \psi_{lL}(x) + Y_l H^c(x) \overline{l_R}(x) \psi_{lL}(x) + h.c.,$$

$$\mathcal{L}_{\text{M}}^{\text{N}}(x) = -\frac{1}{2} M_i \overline{N_i}(x) N_i(x).$$

 ψ_{lL} - LH doublet, $\psi_{lL}^{\mathsf{T}} = (\nu_{lL} \ l_L)$, l_R - RH singlet, H - Higgs doublet. Basis: $M_R = (M_1, M_2, M_3)$; $D_N \equiv \operatorname{diag}(M_1, M_2, M_3)$, $D_{\nu} \equiv \operatorname{diag}(m_1, m_2, m_3)$. m_D generated by the Yukawa interaction:

$$-\mathcal{L}_{Y}^{\nu} = \lambda_{il} \overline{N_{iR}} H^{\dagger}(x) \psi_{lL}(x), \ v = 174 \text{ GeV}, \ v \lambda = m_{D} - \text{complex}$$

For M_R - sufficiently large,

$$m_{\nu} \simeq v^2 \ \lambda^T M_R^{-1} \lambda = U_{\text{PMNS}}^* \ m_{\nu}^{\text{diag}} \ U_{\text{PMNS}}^{\dagger}$$
.
 $Y_{\nu} \equiv \lambda = \sqrt{D_N} \ R \ \sqrt{D_{\nu}} \ (U_{\text{PMNS}})^{\dagger} / v_u$, all at M_R ; *R*-complex, $R^T R = 1$.
J.A. Casas and A. Ibarra, 2001
in GUTs, $M_R < M_X$, $M_X \sim 10^{16}$ GeV;
in GUTs, e.g., $M_R = (10^9, 10^{12}, 10^{15})$ GeV, $m_D \sim 1$ GeV.

The CP-Invarinace Constraints

Assume: $C(\overline{\nu}_j)^T = \nu_j, \quad C(\overline{N}_k)^T = N_k, \quad j, k = 1, 2, 3.$

The CP-symmetry transformation:

$$U_{CP} N_j(x) U_{CP}^{\dagger} = \eta_j^{NCP} \gamma_0 N_j(x'), \quad \eta_j^{NCP} = i\rho_j^N = \pm i, U_{CP} \nu_k(x) U_{CP}^{\dagger} = \eta_k^{\nu CP} \gamma_0 \nu_k(x'), \quad \eta_k^{\nu CP} = i\rho_k^{\nu} = \pm i.$$

CP-invariance:

$$\lambda_{jl}^{*} = \lambda_{jl} (\eta_{j}^{NCP})^{*} \eta^{l} \eta^{H*}, \quad j = 1, 2, 3, \ l = e, \mu, \tau,$$

Convenient choice: $\eta^l = i$, $\eta^H = 1$ ($\eta^W = 1$):

$$\begin{split} \lambda_{jl}^{*} &= \lambda_{jl} \rho_{j}^{N}, \ \rho_{j}^{N} = \pm 1, \\ U_{lj}^{*} &= U_{lj} \rho_{j}^{\nu}, \ \rho_{j}^{\nu} = \pm 1, \\ R_{jk}^{*} &= R_{jk} \rho_{j}^{N} \rho_{k}^{\nu}, \ j, k = 1, 2, 3, \ l = e, \mu, \tau, \end{split}$$

 λ_{jl} , U_{lj} , R_{jk} - either real or purely imaginary.

Relevant quantity:

$$P_{jkml} \equiv R_{jk} R_{jm} U_{lk}^* U_{lm}, \ k \neq m,$$

$$CP: P_{jkml}^* = P_{jkml} (\rho_j^N)^2 (\rho_k^\nu)^2 (\rho_m^\nu)^2 = P_{jkml}, \ \operatorname{Im}(P_{jkml}) = 0.$$

$$P_{jkml} \equiv R_{jk} R_{jm} U_{lk}^* U_{lm}, \ k \neq m,$$

$$CP: P_{jkml}^* = P_{jkml} (\rho_j^N)^2 (\rho_k^\nu)^2 (\rho_m^\nu)^2 = P_{jkml}, \ \operatorname{Im}(P_{jkml}) = 0.$$

Consider NH N_j , NH ν_k : $P_{123\tau} = R_{12} R_{13} U_{\tau 2}^* U_{\tau 3}$

Suppose, CP-invrainace holds at low E: $\delta = 0$, $\alpha_{21} = \pi$, $\alpha_{31} = 0$.

Thus, $U_{\tau 2}^* U_{\tau 3}$ - purely imaginary.

Then real $R_{12} R_{13}$ corresponds to CP-violation at "high" E.

Leptogenesis

$$Y_B = \frac{n_B - n_{\bar{B}}}{S} \sim 8.6 \times 10^{-11} \quad (n_{\gamma}: \sim 6.3 \times 10^{-10})$$
$$Y_B \cong -10^{-2} \quad \mathcal{E} \quad \mathcal{K}$$
W. Buchmüller, M. Plümacher, 1998;
W. Buchmüller, P. Di Bari, M. Plümacher, 2004
$$\mathcal{K}$$
- efficiency factor; $\mathcal{K} \sim 10^{-1} - 10^{-3}$: $\mathcal{E} \gtrsim 10^{-7}$.

 ε : CP-, L- violating asymmetry generated in out of equilibrium N_{Rj} -decays in the early Universe,

$$\varepsilon_1 = \frac{\Gamma(N_1 \to \Phi^- \ell^+) - \Gamma(N_1 \to \Phi^+ \ell^-)}{\Gamma(N_1 \to \Phi^- \ell^+) + \Gamma(N_1 \to \Phi^+ \ell^-)}$$

M.A. Luty, 1992; L. Covi, E. Roulet and F. Vissani, 1996; M. Flanz *et al.*, 1996; M. Plümacher, 1997; A. Pilaftsis, 1997.

 $\kappa = \kappa(\widetilde{m}), \ \widetilde{m}$ - determines the rate of wash-out processes:

 $\Phi^+ + \ell^- \rightarrow N_1$, $\ell^- + \Phi^+ \rightarrow \Phi^- + \ell^+$, etc.

W. Buchmuller, P. Di Bari and M. Plumacher, 2002; G. F. Giudice *et al.*, 2004

Low Energy Leptonic CPV and Leptogenesis

Assume: $M_1 \ll M_2 \ll M_3$ Individual asymmetries:

$$\varepsilon_{1l} = -\frac{3M_1}{16\pi v^2} \frac{\operatorname{Im}\left(\sum_{j,k} m_j^{1/2} m_k^{3/2} U_{lj}^* U_{lk} R_{1j} R_{1k}\right)}{\sum_j m_j |R_{1j}|^2}, \qquad v = 174 \text{ GeV}$$

$$\widetilde{m_{l}} \equiv \frac{|\lambda_{1l}|^{2} v^{2}}{M_{1}} = \left| \sum_{k} R_{1k} m_{k}^{1/2} U_{lk}^{*} \right|^{2}, \quad l = e, \mu, \tau.$$

The "one-flavor" approximation - $Y_{e,\mu,\tau}$ - "small": Boltzmann eqn. for $n(N_1)$ and $\Delta L = \Delta(L_e + L_\mu + L_\tau)$. $Y_l \ H^c(x)\overline{l_R}(x)\psi_{lL}$ - out of equilibrium at $T \sim M_1$. One-flavor approximation: $M_1 \sim T > 10^{12}$ GeV

$$\varepsilon_1 = \sum_{l} \varepsilon_{1l} = -\frac{3M_1}{16\pi v^2} \frac{\operatorname{Im}\left(\sum_{j,k} m_j^2 R_{1j}^2\right)}{\sum_k m_k |R_{1k}|^2},$$

$$\widetilde{m_1} = \sum_{l} \widetilde{m_l} = \sum_k m_k |R_{1k}|^2.$$

Two-Flavour Regime

At $M_1 \sim T \sim 10^{12}$ GeV: Y_{τ} - in equilibrium, $Y_{e,\mu}$ - not; dynamics changes: τ_R^- , τ_L^+ $\tau_R^- + N_1 \rightarrow \nu_L + \tau_R^-$, $N_1 + \nu_L \rightarrow \tau_R^- + \tau_L^+$, etc. $\varepsilon_{1\tau}$ and $(\varepsilon_{1e} + \varepsilon_{1\mu}) \equiv \varepsilon_2$ evolve independently.

Three-Flavour Regime

At $M_1 \sim T \sim 10^9$ GeV: Y_{τ} , Y_{μ} - in equilibrium, Y_e - not.

 $\varepsilon_{1\tau}$, ε_{1e} and $\varepsilon_{1\mu}$ evolve independently.

Thus, at $M_1 \sim 10^9 - 10^{12}$ GeV: L_{τ} , ΔL_{τ} - distinguishable;

 $L_e, L_\mu, \Delta L_e, \Delta L_\mu$ - individually not distinguishable; $L_e + L_\mu, \Delta (L_e + L_\mu)$

A. Abada et al., 2006; E. Nardi et al., 2006 A. Abada et al., 2006

Individual asymmetries:

Assume: $M_1 \ll M_2 \ll M_3$, $10^9 \lesssim M_1 \ (\sim T) \lesssim 10^{12} \text{ GeV}$,

$$\varepsilon_{1l} = -\frac{3M_1}{16\pi v^2} \frac{\operatorname{Im}\left(\sum_{j,k} m_j^{1/2} m_k^{3/2} U_{lj}^* U_{lk} R_{1j} R_{1k}\right)}{\sum_j m_j |R_{1j}|^2}$$

$$\widetilde{m_{l}} \equiv \frac{|\lambda_{1l}|^{2} v^{2}}{M_{1}} = \left| \sum_{k} R_{1k} m_{k}^{1/2} U_{lk}^{*} \right|^{2}, \quad l = e, \mu, \tau.$$

The baryon asymmetry is

$$Y_B \simeq -\frac{12}{37g_*} \left(\epsilon_2 \eta \left(\frac{417}{589} \widetilde{m_2} \right) + \epsilon_\tau \eta \left(\frac{390}{589} \widetilde{m_\tau} \right) \right),$$

$$\eta \left(\widetilde{m_l} \right) \simeq \left(\left(\frac{\widetilde{m_l}}{8.25 \times 10^{-3} \,\mathrm{eV}} \right)^{-1} + \left(\frac{0.2 \times 10^{-3} \,\mathrm{eV}}{\widetilde{m_l}} \right)^{-1.16} \right)^{-1}$$

•

$$\begin{split} Y_{\mathcal{B}} &= -(12/37) \left(Y_2 + Y_{\tau}\right), \\ Y_2 &= Y_{e+\mu}, \quad \varepsilon_2 = \varepsilon_{1e} + \varepsilon_{1\mu}, \quad \widetilde{m_2} = \widetilde{m_{1e}} + \widetilde{m_{1\mu}} \\ & \text{A. Abada et al., 2006; E. Nardi et al., 2006} \\ & \text{A. Abada et al., 2006} \end{split}$$

Real (Purely Imaginary) *R*: $\varepsilon_{1l} \neq 0$, CPV from *U* $\varepsilon_{1e} + \varepsilon_{1\mu} + \varepsilon_{1\tau} = \varepsilon_2 + \varepsilon_{1\tau} = 0$,

$$\begin{split} \varepsilon_{1\tau} &= -\frac{3M_1}{16\pi v^2} \frac{\mathrm{Im}\left(\sum_{j,k} m_j^{1/2} m_k^{3/2} U_{\tau j}^* U_{\tau k} R_{1j} R_{1k}\right)}{\sum_j m_j |R_{1j}|^2} \\ &= -\frac{3M_1}{16\pi v^2} \frac{\sum_{j,k>j} m_j^{1/2} m_k^{1/2} (m_k - m_j) R_{1j} R_{1k} \mathrm{Im}\left(U_{\tau j}^* U_{\tau k}\right)}{\sum_j m_j |R_{1j}|^2}, R_{1j} R_{1k} = \pm |R_{1j} R_{1k}|, \\ &= \mp \frac{3M_1}{16\pi v^2} \frac{\sum_{j,k>j} m_j^{1/2} m_k^{1/2} (m_k + m_j) |R_{1j} R_{1k}| \operatorname{Re}\left(U_{\tau j}^* U_{\tau k}\right)}{\sum_j m_j |R_{1j}|^2}, R_{1j} R_{1k} = \pm i |R_{1j} R_{1k}|, \end{split}$$

S. Pascoli, S.T.P., A. Riotto, 2006.

CP-Violation: Im $(U_{\tau j}^* U_{\tau k}) \neq 0$, Re $(U_{\tau j}^* U_{\tau k}) \neq 0$;

$$Y_B = -\frac{12}{37} \frac{\varepsilon_{1\tau}}{g_*} \left(\eta \left(\frac{390}{589} \widetilde{m_{\tau}} \right) - \eta \left(\frac{417}{589} \widetilde{m_2} \right) \right)$$

 $m_1 \ll m_2 \ll m_3, M_1 \ll M_{2,3}; R_{12}R_{13} - \text{real}; m_1 \cong 0, R_{11} \cong 0$ (N₃ decoupling)

$$\varepsilon_{1\tau} = -\frac{3M_1\sqrt{\Delta m_{31}^2}}{16\pi v^2} \left(\frac{\Delta m_{\odot}^2}{\Delta m_{31}^2}\right)^{\frac{1}{4}} \frac{|R_{12}R_{13}|}{\left(\frac{\Delta m_{\odot}^2}{\Delta m_{31}^2}\right)^{\frac{1}{2}} |R_{12}|^2 + |R_{13}|^2} \\ \times \left(1 - \frac{\sqrt{\Delta m_{\odot}^2}}{\sqrt{\Delta m_{31}^2}}\right) \operatorname{Im}\left(U_{\tau 2}^* U_{\tau 3}\right)$$

$$\operatorname{Im}(U_{\tau 2}^{*}U_{\tau 3}) = -c_{13}\left[c_{23}s_{23}c_{12}\sin\left(\frac{\alpha_{32}}{2}\right) - c_{23}^{2}s_{12}s_{13}\sin\left(\delta - \frac{\alpha_{32}}{2}\right)\right]$$

 $\alpha_{32} = \pi, \ \delta = 0$: Re $(U_{\tau 2}^* U_{\tau 3}) = 0$, CPV due to *R* S. Pascoli, S.T.P., A. Riotto, 2006. $M_1 \ll M_2 \ll M_3, \ m_1 \ll m_2 \ll m_3 \ (NH)$

Dirac CP-violation

 $\alpha_{32} = 0 \ (2\pi), \ \beta_{23} = \pi \ (0); \ \beta_{23} \equiv \beta_{12} + \beta_{13} \equiv \arg(R_{12}R_{13}).$

 $|R_{12}|^2 \cong 0.85$, $|R_{13}|^2 = 1 - |R_{12}|^2 \cong 0.15$ - maximise $|\epsilon_{\tau}|$ and $|Y_B|$:

$$egin{aligned} |Y_B| &\cong 2.8 imes 10^{-13} \, |\sin \delta| \, \left(rac{s_{13}}{0.2}
ight) \left(rac{M_1}{10^9 \, \, {
m GeV}}
ight) \, . \ Y_B| \gtrsim 8 imes 10^{-11}, \quad M_1 \lesssim 5 imes 10^{11} \, \, {
m GeV} \ {
m imply} \end{aligned}$$

 $|\sin \theta_{13} \sin \delta| \gtrsim 0.11$, $\sin \theta_{13} \gtrsim 0.11$.

The lower limit corresponds to

 $|J_{\mathsf{CP}}| \gtrsim 2.4 imes 10^{-2}$

FOR $\alpha_{32} = 0$ (2 π), $\beta_{23} = 0$ (π):

 $|\sin heta_{13} \sin \delta| \gtrsim 0.09$, $\sin heta_{13} \gtrsim 0.09$; $|J_{\sf CP}| \gtrsim 2.0 imes 10^{-2}$

 $M_1 \ll M_2 \ll M_3, \ m_1 \ll m_2 \ll m_3 \ (NH)$

Majorana CP-violation

 $\delta = 0$, real R_{12} , R_{13} ($\beta_{23} = \pi$ (0));

 $\alpha_{32} \cong \pi/2$, $|R_{12}|^2 \cong 0.85$, $|R_{13}|^2 = 1 - |R_{12}|^2 \cong 0.15$ - maximise $|\epsilon_{\tau}|$ and $|Y_B|$:

$$|Y_B| \cong 2 \times 10^{-12} \left(\frac{\sqrt{\Delta m_{31}^2}}{0.05 \text{ eV}} \right) \left(\frac{M_1}{10^9 \text{ GeV}} \right) \,.$$

We get $|Y_B| \gtrsim 8 \times 10^{-11}$, for $M_1 \gtrsim 3.6 \times 10^{10}$ GeV

 $M_1 \ll M_2 \ll M_3, \ m_3 \ll m_1 < m_2$ (IH)

 $m_3 \cong 0$, $R_{13} \cong 0$ (N_3 decoupling): impossible to reproduce Y_B^{obs} for real $R_{11}R_{12}$

Dirac CP-violation, purely imaginary $R_{11}R_{12}$

 $\alpha_{21} = \pi; R_{11}R_{12} = i\kappa |R_{11}R_{12}|, \kappa = 1;$

$$\begin{split} |R_{11}| &\cong 1.07, \ |R_{12}|^2 = |R_{11}|^2 - 1, \ |R_{12}| \cong 0.38 - \text{maximise} \ |\epsilon_{\tau}| \text{ and } |Y_B|:\\ |Y_B| &\cong 8.1 \times 10^{-12} \ |s_{13} \sin \delta| \ \left(\frac{M_1}{10^9 \text{ GeV}}\right).\\ |Y_B| &\gtrsim 8 \times 10^{-11}, \quad M_1 \lesssim 5 \times 10^{11} \text{ GeV imply} \end{split}$$

 $|\sin \theta_{13} \sin \delta| \gtrsim 0.02$, $\sin \theta_{13} \gtrsim 0.02$.

The lower limit corresponds to

 $|J_{\mathsf{CP}}| \gtrsim 4.6 imes 10^{-3}$

- $M_1 \ll M_2 \ll M_3, \ m_3 \ll m_1 < m_2$ (IH)
- Majorana or Dirac CP-violation

 $m_3 \neq 0$, $R_{13} \neq 0$, $R_{11}(R_{12}) = 0$: possible to reproduce Y_B^{obs} for real $R_{12(11)}R_{13} \neq 0$

Requires $m_3 \cong (10^{-5} - 10^{-2})$ eV; non-trivial dependence of $|Y_B|$ on m_3

Majorana CPV, $\delta = 0$ (π): requires $M_1 \gtrsim 3.5 \times 10^{10}$ GeV

Dirac CPV, $\alpha_{32(31)} = 0$: typically requires $M_1 \gtrsim 10^{11}$ GeV

 $|Y_B| \gtrsim 8 \times 10^{-11}$, $M_1 \lesssim 5 \times 10^{11}$ GeV imply

 $|\sin \theta_{13} \sin \delta|, \sin \theta_{13} \gtrsim (0.04 - 0.09).$

The lower limit corresponds to

 $|J_{\sf CP}| \gtrsim (0.009 - 0.02)$

NO (NH) spectrum, $m_1 < (\ll) m_2 < m_3$: similar dependence of $|Y_B|$ on m_1 if $R_{12} = 0$, $R_{11}R_{13} \neq 0$; non-trivial effects for $m_1 \cong (10^{-5} - 5 \times 10^{-2})$ eV. E. Molinaro, S.T.P., T. Shindou, Y. Takanishi, 2007

$$\begin{split} M_1 \ll M_2 \ll M_3, \ m_1 \ll m_2 \ll m_3; \ \text{Dirac CP-violation}, \ \alpha_{32} = 0; \ 2\pi; \\ \text{real } R_{12}, \ R_{13}, \ |R_{12}|^2 + |R_{13}|^2 = 1, \ |R_{12}| = 0.86, \ |R_{13}| = 0.51, \ \text{sign} \ (R_{12}R_{13}) = +1; \\ \text{i) } \alpha_{32} = 0 \ (\kappa' = +1), \ s_{13} = 0.2 \ (\text{red line}) \ \text{and} \ s_{13} = 0.1 \ (\text{dark blue line}); \\ \text{ii) } \alpha_{32} = 2\pi \ (\kappa' = -1), \ s_{13} = 0.2 \ (\text{light blue line}); \\ M_1 = 5 \times 10^{11} \ \text{GeV}. \end{split}$$

 $m_3 < m_1 < m_2$, $M_1 \ll M_2 \ll M_3$, real R_{1j} ; $M_1 = (10^9 - 10^{12})$ GeV, $s_{13} = 0.2$; 0.1; 0; R_{1j} varied within $|R_{13}|^2 + |R_{12}|^2 + |R_{13}|^2 = 1$; $\alpha_{21}, \alpha_{31}, \delta$ varied in $[0, 2\pi]$; min (M_1) for given m_3 : $|Y_B| = 8.6 \times 10^{-11}$; absolute minima of M_1 : $m_3 \cong 5.5 \times 10^{-4}$; 5.9×10^{-3} eV, $\alpha_{32} \cong \pi/2$, $M_1 = 3.4$ $(3.5) \times 10^{10}$ GeV.

 $m_3 \ll m_1 \ll m_2$ (IH), $R_{11} = 0$, real $R_{12}R_{13}$, Majorana CPV; $\alpha_{32} = \pi/2$, $s_{13} = 0$, $M_1 = 10^{11}$ GeV; i) sgn $(R_{12}R_{13}) = +1$; ii) sgn $(R_{12}R_{13}) = -1$.

 $m_3 \ll m_1 \ll m_2$ (IH), $R_{11} = 0$, real $R_{12}R_{13}$, Dirac CPV, $\alpha_{32} = 0$; $s_{13} = 0.2, \ \delta = \pi/2, \ M_1 = 10^{11} \text{ GeV}$; i) $\text{sgn}(R_{12}R_{13}) = +1$; ii) $\text{sgn}(R_{12}R_{13}) = -1$; i) $\sin^2 \theta_{23} = 0.50$; 0.35; 0.64 (red solid, dotted, dash-dotted lines); ii) $\sin^2 \theta_{23} = 0.50$ (blue dashed line);

 $m_1 < m_2 < m_3$ (NO(NH)), $R_{12} = 0$, real $R_{11}R_{13}$, Majorana CPV, $s_{13} = 0$; sgn $(R_{11}R_{13}) = -1$, sin² $\theta_{23} = 0.50$, $M_1 = 3 \times 10^{11}$ GeV; $\alpha_{32} = 2\pi/3$; $\pi/2$; $\pi/3$ (red, blue, green lines).

 $M_1 \ll M_2 \ll M_3, m_1 \ll m_2 \ll m_3; M_1 = 5 \times 10^{11} \text{ GeV};$ Dirac CP-violation, $\alpha_{32} = 0 \ (2\pi);$ $|R_{12}| = 0.86, |R_{13}| = 0.51, \text{ sign} (R_{12}R_{13}) = +1 \ (-1) \ (\beta_{23} = 0 \ (\pi), \ \kappa' = +1);$ The red region denotes the 2σ allowed range of Y_{B} .

 $M_1 \ll M_2 \ll M_3$, $m_1 \ll m_2 \ll m_3$; Majorana CP-violation, $\delta = 0$; real R_{12} , R_{13} , $|R_{12}| = 0.92$, $|R_{13}| = 0.39$, sgn $(R_{12}R_{13}) = +1$ ($\beta_{23} = 0$, $\kappa = +1$); $M_1 = 5 \times 10^{10}$ GeV, $s_{13} = 0$ (blue line) and 0.2 (red line).

 $M_1 \ll M_2 \ll M_3, m_1 \ll m_2 \ll m_3; M_1 = 5 \times 10^{11} \text{ GeV};$ real R_{12}, R_{13} , sign $(R_{12}R_{13}) = +1, R_{12}^2 + R_{13}^2 = 1, s_{13} = 0.20;$ a) Majorana CP-violation (blue line), $\delta = 0$ and $\alpha_{32} = \pi/2$ ($\kappa = +1$); b) Dirac CP-violation (red line), $\delta = \pi/2$ and $\alpha_{32} = 0$ ($\kappa' = +1$); $\Delta m_{\odot}^2, \sin^2 \theta_{12}, \Delta m_{31}^2, \sin^2 2\theta_{23}$ - fixed at their best fit values.

 $M_1 \ll M_2 \ll M_3, m_3 \ll m_1 < m_2; M_1 = 2 \times 10^{11} \text{ GeV};$ Majorana CP-violation, $\delta = 0;$ purely imaginary $R_{11}R_{12} = i\kappa |R_{11}R_{12}|, \kappa = -1, |R_{11}|^2 - |R_{12}|^2 = 1, |R_{11}| = 1.2;$ $s_{13} = 0$ (blue line) and 0.2 (red line).

 $M_1 \ll M_2 \ll M_3, m_3 \ll m_1 < m_2; M_1 = 2 \times 10^{11} \text{ GeV};$ Majorana CP-violation, $\delta = 0;$ purely imaginary $R_{11}R_{12} = i\kappa |R_{11}R_{12}|, \kappa = +1, |R_{11}|^2 - |R_{12}|^2 = 1, |R_{11}| = 1.05;$ $s_{13} = 0$ (blue line) and 0.2 (red line).

 $M_1 \ll M_2 \ll M_3, m_3 \ll m_1 < m_2; M_1 = 2 \times 10^{11} \text{ GeV};$ Majorana CP-violation, $\delta = 0, s_{13} = 0;$ purely imaginary $R_{11}R_{12} = i\kappa |R_{11}R_{12}|, \kappa = +1 |R_{11}|^2 - |R_{12}|^2 = 1, |R_{11}| = 1.05.$ The Majorana phase α_{21} is varied in the interval $[-\pi/2, \pi/2].$

Low Energy Leptonic CPV and Leptogenesis: Summary

Leptogenesis: see-saw mechanism; N_j - heavy RH ν 's; N_j , ν_k - Majorana particles

 N_j : $M_1 \ll M_2 \ll M_3$

The observed value of the baryon asymmetry of the Universe can be generated

A. CP-violation due to the Dirac phase δ in U_{PMNS} , no other sources of CPV (Majorana phases in U_{PMNS} equal to 0, etc.)

 $m_1 \ll m_2 \ll m_3$ (NH):

 $|\sin \theta_{13} \sin \delta| \gtrsim 0.09$, $\sin \theta_{13} \gtrsim 0.09$; $|J_{CP}| \gtrsim 2.0 \times 10^{-2}$

 $m_3 \ll m_1 < m_2$ (IH):

 $|\sin heta_{13}\sin\delta|\gtrsim 0.02\,,$ $\sin heta_{13}\gtrsim 0.02\,;$ $|J_{\mathsf{CP}}|\gtrsim 4.6 imes 10^{-3}$

B. CP-violation due to the Majorana phases in U_{PMNS} , no other sources of CPV (Dirac phase in U_{PMNS} equal to 0, etc.)

C. CP-violation due to both Dirac and Majorana phases in U_{PMNS} , no other source of CPV. S. Pascoli, S.T.P., A. Riotto, 2006.

Conclusions

The see-saw mechanism provides a link between ν -mass generation and BAU.

Determining the nature - Dirac or Majorana, of massive neutrinos is of fundamental importance for understanding the origin of neutrino masses.

CPV phases in U_{PMNS} can be the leptogenesis CPV parameters.

Low energy leptonic CPV can be directly related to the existence of BAU.

Understanding the status of the CP-symmetry in the lepton sector is of fundamental importance.

These results underline further the importance of the experiments aiming to measure the CHOOZ angle θ_{13} and of the experimental searches for Dirac and/or Majorana leptonic CP-violation at low energies.