# The XMASS experiment

K. Abe Institute for Cosmic Ray Research, University of Tokyo

## 1. Introduction

#### What's XMASS

Multi purpose low-background and low-energy threshold experiment with liq. Xe

- Xenon detector for Weakly Interacting MASSive Particles (DM search)
- Xenon MASSive detector for solar neutrino (pp/7Be)
- Xenon neutrino MASS detector ( $\beta\beta$  decay)



#### Why liquid xenon

- Large photon yield (~42 photons/keV ~ Nal(TI)) Low threshold
- High density (~3 g/cm<sup>3</sup>)

**Compact detector** (10 ton: sphere with diameter of ~2m)

•Large Z (=54)

Shielding effect of itself is large.

- Purification (distillation)
- No long life radioactive isotope
- Scintillation wavelength (175 nm, detected directly by PMT)

# We can achieve low energy threshold and low background.

#### XMASS Strategy of the scale-up

10 ton detector



#### Target for 800kg : Dark Matter search





- 1. Dark matter search
  - 1. With liquid xenon ~1ton, reduce BG below 100 keV to 10<sup>-4</sup>/day/keV/kg by self shielding.
  - 2. Search the signal from dark matter in low energy region.

Sep/12/2007

## Vertex reconstruction



Sep/12/2007

Large photoelectron Yield can be obtained ~4 p.e./keV

Accurate vertex Reconstruction based on light pattern possible



## Reconstruction study with the prototype

Reconstruction is performed by PMT charge pattern (not timing)

Calculate PMT acceptances from various positions by Monte Carlo. Vtx.: compare acceptance map of F(x,y,z,i)

$$Log(L) = \sum_{PMT} Log(\frac{exp(-\mu)\mu^{n}}{n!})$$
  
L: likelihood  
$$\mu: \frac{F(x,y,z,i)}{\sum F(x,y,z,i)} \text{ x total p.e.}$$
  
n: observed number of p.e.



### Demonstration with a prototype detector II



# Sensitivity of the 800kg detector



<sup>6</sup> XMASS FV 0.5ton year
 4 (100kg, 5yr)
 3σ discovery

Plots exept for XMASS http://dmtools.berkeley.edu Gaitskell & Mandic

#### x ~100 sensitive than XENON10

Sep/12/2007

## 2. Status of XMASS 800 kg detector

- Basic performances have been already confirmed using 100kg detector
  - 1. Method to reconstruct the vertex and energy
  - 2. Self shielding power
  - 3. BG level



#### • Detector design is going using MC

- ✓ Structure of detector
- ✓ BG estimation
  - ✓ PMT gamma
  - ✓ external gamma and neutron
  - ✓ Radioactive contamination in LXe

Sep/12/2007



Sep/12/2007



# Structure of 800kg detector

- 60 triangles
- 10 PMT/triangle x 60 = 600 PMTs
- + 212 PMTs in triangle boundary region
- Total 812 PMTs
- Photo coverage 67.0%
- Center to photocathode ~45cm
- Fiducial vloume is 25cm from center.
- PMTs are inside liquid xenon.







Sep/12/2007

### Background estimation

- PMT gamma background
  - Reduced by self shielding
  - Position reconstruction
  - U/Th/K/Co
- External gamma
  - Reduced by water shield
- Neutron
  - Reduced by water shield
- Radioactive contamination in LXe

≻PMT BG

- Reconstruction of event
  - Key part for self shielding
  - Basic part is same as the one confirmed in 100kg detector.



Sep/12/2007

#### Estimated PMT BG

- Activity of PMT
  - <sup>238</sup>U chain 1.8x10<sup>-3</sup> Bq/PMT
  - <sup>232</sup>Th chain 6.9x10<sup>-4</sup> Bq/PMT
  - − <sup>60</sup>Co 5.5x10<sup>-3</sup> Bq/PMT
  - <sup>40</sup>K 1.4x10<sup>-2</sup> Bq/PMT
- Below 300 keV number of events in the 25cm fiducial volume decreases rapidly.
- Below 100 keV remaining events are few.
- Below 300keV,
   <10<sup>-4</sup> /day/keV/kg BG level.



Sep/12/2007

## Radioactive contamination in LXe

Internal origin of background Target values to achieve our goal

<sup>238</sup>U: < 1x10<sup>-14</sup> g/g (~1decay/100kg/d)
<sup>232</sup>Th: < 2x10<sup>-14</sup> g/g (~1decay/100kg/d)
<sup>85</sup>Kr: < 1ppt</p> Measured with the prototype detector

(9 ± 6) x10<sup>-14</sup> g/g Further reduction by filter < 23 x10<sup>-14</sup> g/g Upper limit, use filter  $3.3 \pm 1.1$  ppt by a prototype distillation tower

#### U, Th, Kr near to the goal. Within reach.

## Water shield and a new experimental hall



15m

New Halls

- n prod. in PMTs is estimated  $< \gamma BG$
- Passive for n from rock, active for n from CR  $\mu$
- Excavation started 7<sup>th</sup> Aug. and finish Feb.2008. taup2007



# Schedule of 800 kg detector

- Budget funded in this year.
- We are making detail design of the detector.
  - Structure, Detector, water shield, ....
  - Purification system
  - Cooling system
  - Electronics and etc.....
- Excavation at Kamioka started from this August, will be finished next February.
- Planning to finish the construction in two years.
- The measurements will be started from 2009.

# Summary

- XMASS 800kg detector
  - 1 ton liquid xenon, 90cm diameter, 60 triangles, 812 PMTs
  - Dark matter search 10<sup>-45</sup> cm<sup>2</sup>
- Detector design by simulation
  - Background from PMT
    - <~10<sup>-5</sup> dru inside fiducial volume
  - Contamination in LXe
    - Target level within reach
  - External gamma and fast neutron
    - Water shield reduce.
- Schedule
  - Budget funded in this year.
  - Planning to construct the detector as soon as possible.

Sep/12/2007