

Deep Underground Science and Engineering Laboratory

Kevin T. Lesko UC Berkeley and Lawrence Berkeley National Laboratory

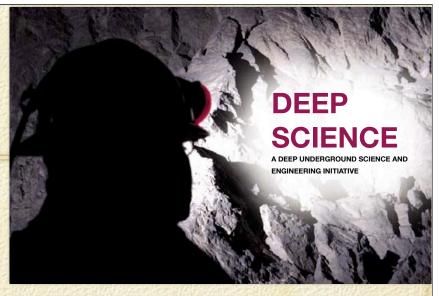
TAUP 2007 Sendai 12 September 2007

 The US National Science Foundation's Deep Underground Science and Engineering Laboratory (DUSEL) Progress and Process

2. Progress in establishing DUSEL at Homestake and Early Options for Science at the Sanford Laboratory

DUSEL Progress &

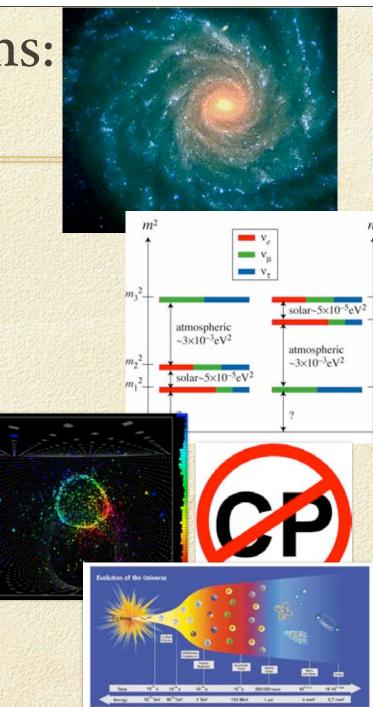
Remaining Steps


- ☑ Fall o6 <u>S-1</u> Report Released <u>www.dusel.org</u>
- January April 07 S-2 Conceptual Designs reviewed
- In July 07 S-3 awarded funding for a single site (Homestake) to advanced design to Preliminary & Final phases
 - Develop baselined DUSEL plan, for review by NSF, MREFC Panel, NSB, ... 3 years
 - Homestake Collaboration Open, additional participation welcomed and encouraged - planning, science, coordination
- Early Implementation Program at Homestake in parallel with NSF process, Program developing for 2007-08 start
- Summer 07 <u>S-4</u> Call for Initial Suite Experiments by NSF (iterative process) Town meeting November 2007
- **FY10/11 DUSEL funding**, include Experiments and Facility
 - Experimental apparatus > 50% of -\$500M construction project

S-1 Findings & Recommendations Findings:

- Deep underground science is an essential component of research at the frontier
 - Disciplines in transformation
- Benefits to society
 - Worldwide need for underground space
- Need for a U.S. world-class deep multidisciplinary facility

Recommendations:


- Strong support for deep underground science
- ✤ A cross agency Deep Science Initiative
 - A Deep Underground Science and Engineering Laboratory (6000 mwe, 3000 mwe, 30 to 50 years, ASAP)

www.dusel.org

Deep Science Questions: Physics & Cosmology

- What is the universe made of?
- What is dark matter?
- What are neutrinos telling us?
- What happened to the antimatter?
- Are protons unstable?
- How did the universe evolve?

Timeline and Progress at Homestake

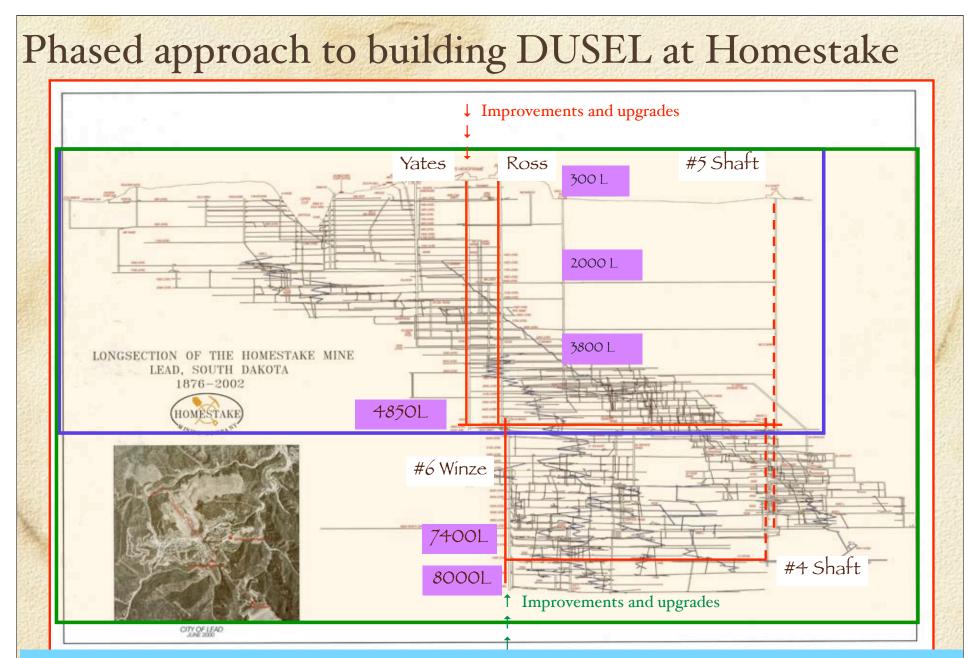
 October 2005, State Legislature approves additional \$20M funding for Homestake, total of \$46M from state controlled sources. Rehab plan: \$15M Indemnification fund: \$10M Operations: \$15M Insurance: \$2.5M Contingency: \$3.5M

- I November 2005 First call: Letters of Interest for Homestake 85 letters responses
- Property Donation Agreement Completed 14 April 2006, Property transferred to S.D. May 2006, SDSTA hiring staff to oversee and operate Homestake: ~30 for rehabilitation, ~ 25 to 30 staff members
- T. Denny Sanford pledges <u>\$70M</u> to develop Homestake into SUSEL
- Conceptual Design Completed January 2007
- January 2007 Rehab work initiated
- Early Implementation Program at Homestake 2007 2012
 "The Sanford Laboratory"
 - DUSEL funding anticipated in FY10 FY11

Approximate boundary of transferred property: 186 acres (surface) 7700 (u/g)

hops

HOMESTAKE FOMESTAK


Ross Complex

Kirk Fans, 300L

Oro Hondo Fan

Oro Hondo Sub

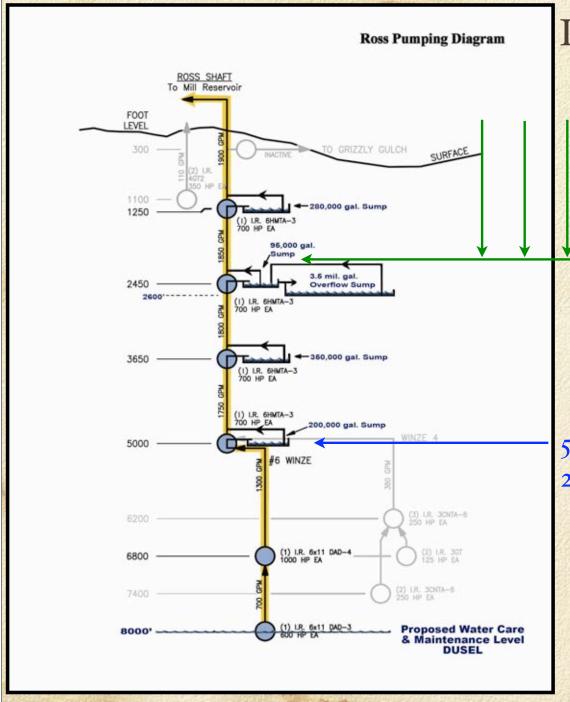
A dedicated science facility without competition or interference from mining, transportation, etc.

Re-entering Homestake and Establishing the Sanford Laboratory

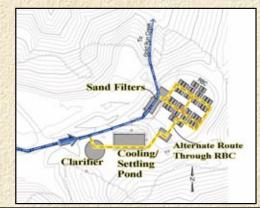
Surface rehabilitation including hoists and buildings

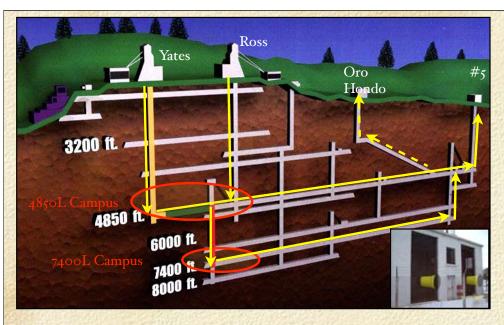

Shaft Inspections and Maintenance

Level Inspections


Pumping

Ventilation


 Early Implementation Program at Homestake



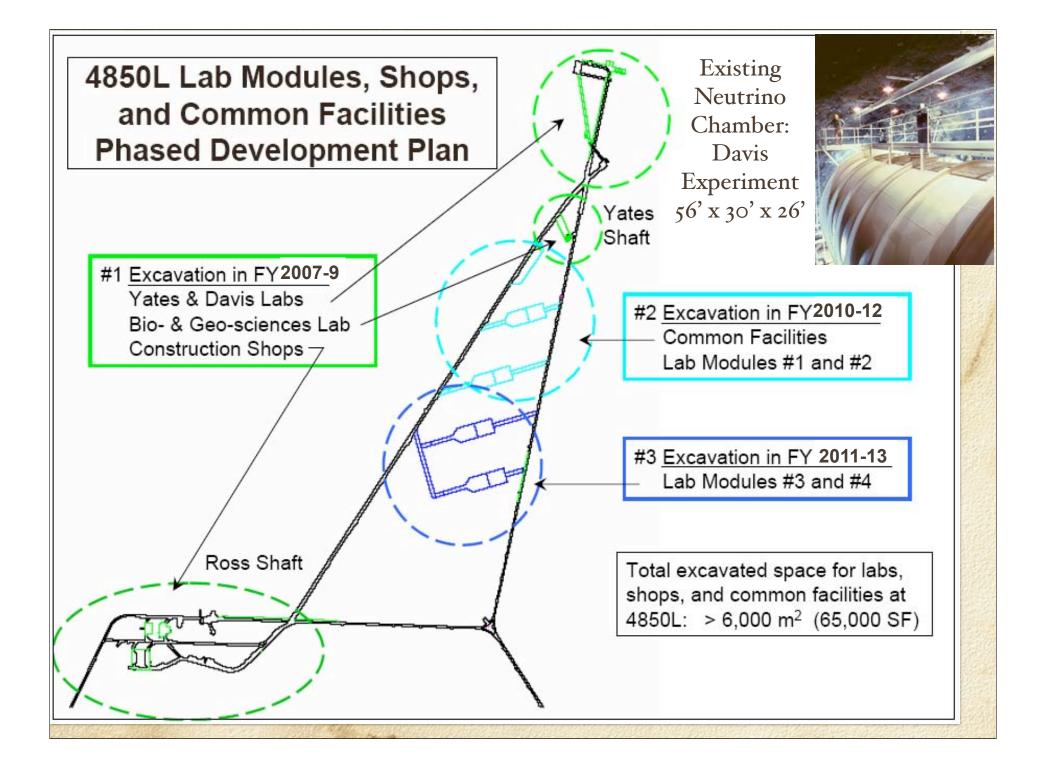
Dewatering Homestake **Current Water Levels** Re-entry Efforts, begun in July, have inspected levels and shafts down to 2100 L Immediate Focus on turning on pumps at 1250L and 2450L in August • Arrest water at 5300L by September 5000 level submerged July 2007

1250 Level July 2007 First Pump Station ready for Installation

<u>General Plan for Primary</u> <u>Ventilation, Pumping</u>

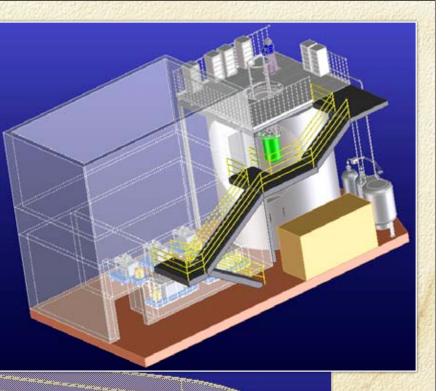
• Two Exhaust Fans at #5 Shaft (with alternate exhaust at Oro Hondo)

• SDSTA plan for installation of Ross Shaft Pumping System to hold the accumulated water below the 5300 L

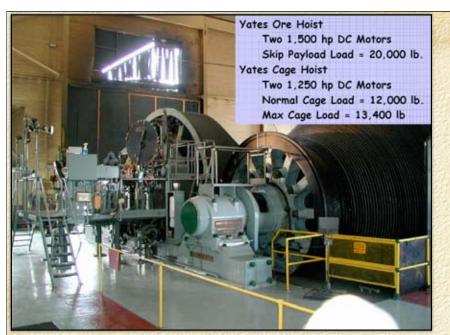

Employing ~ 28 locals + 5 Dynatec supervisors

Sanford Laboratory

29 August SDSTA Board approved funding Interim Laboratory: \$65M
State + Sanford funds to develop
Sanford Laboratory (surface, access, 4850L)


• SDSTA currently seeking 25 - 30 employees: Interim Lab Director Project Managers, Project Engineers, Safety Director, ...

Experiment Name	PI(s)	Institution	Letter of Interest	Memorandum of Understanding	Brief Description					
LUX: Development of a large liquid xenon dark matter detector	Rick Gaitskell	Brown	Yes	Yes	Direct Detection of Dark Matter using cryogenic liquid Xe, detection of signals and separation of signal from background using scintillation light. Detector requires several meters of water shielding to reduce	Dark Matter				
	Tom Shutt	Case Western			backgrounds. 4850L Davis Cavity is appropriat					
	Steven Glaser	UCB	Yes	Yes	This proposal presents a plan to install and operate a permanent seismic observatory illuminating the volume of the Homestake Mine from all six possible directions. We have chosen the Homestake DUSEL site because it	Geo/seismic array				
	Lane Johnson Bill Roggenthen	UCB SDSM&T			offers a unique opportunity - the large					
ow Background						Low Background				
	Dongming Mei	USD	Yes	Yes	Develop a state-of-the-art Low Background Assay Facility in the Davis Cavity (4850L)	Counting				
	Bill Roggenthen	SDSM&T				C				
niniCLEAN	Andrew Hime	LANL	Yes	MOU under discussion	Direct Detection of Dark Matter using cryogenic noble gases.	Dark Matter				
latter	Dongming Mei Andrew Hime KTL	USD LANL LBNL	Yes	MOU under discussion	Direct Detection of Dark Matter using cryogenic noble gases.	Dark Matter				
lomestake: iological, Chemical nd Geological ampling	Sookie Bang	SDSM&T	Yes	Yes	Site Characterization and baseline establishment for biology, chemistry, hydrology, and geology	Geo/Bio				
Aziorana	Mark Conrad John Wilkerson Steve Elliott	LBNL U.W. LANL	Yes	MOU being developed August 2007	Development of ultrapure materials, low background counting and Ge detector demonstration module	Neutrinoless ββ				
arge Cavity Development and &D	Milind Diwan Ken Lande	Brookhave Penn	r Yes	Yes	Develop plans for large cavities and water-Cerenkov detectors for nucleon decay and long baseline neutrino experiments	Large Cavities, LBL v				
Carbon Sequestration Experimental Design	Joe Wang Kevin Lesko	LBNL	Yes	Yes	Development of experimental designs for carbon sequestration facilities and the behavior of super- critical CO2 in the underground	Carbon Sequestration				



Dark Matter Experiment with Low Background Facility

Current Davis Cavity
Dimensions:4850L55ft x 30ft x 32ft highAccess

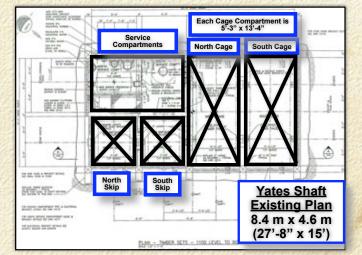
4850L Secondary Access

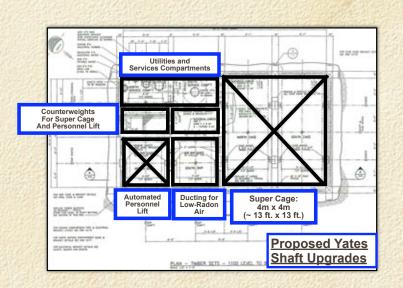
Existing Cage Dimensions and Capacities

Yates Cage Hoist

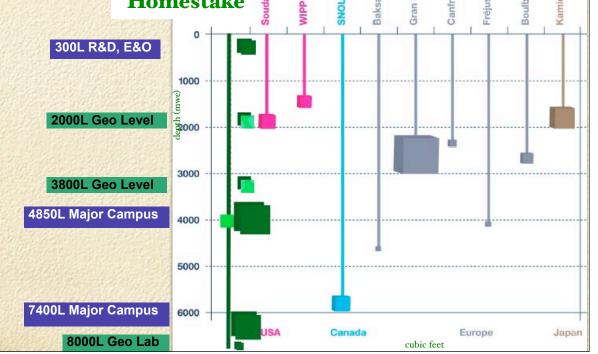
Maximum cage dimensions: 1.4 x 3.7 x 2.2m high (side-by-side) (4' 8" x 12' 1.5" x 7' 2" high) Maximum cage payload: 5,450 kg (12,000 lb), nominal 5,900 kg (13,000 lb), allowable at 1/2-speed.

Ross Cage Hoist

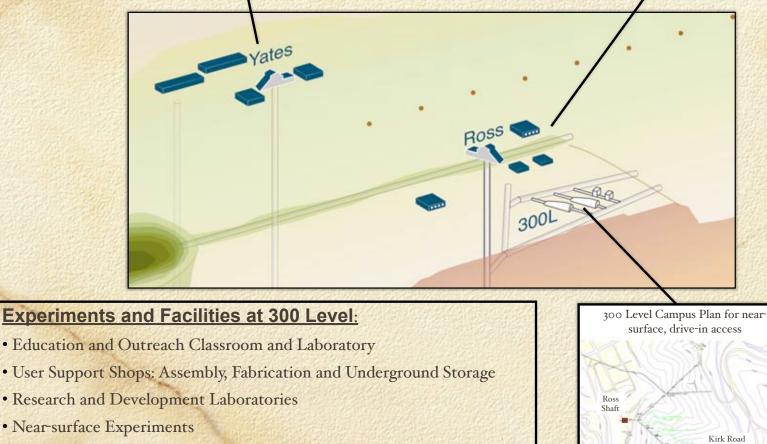

Maximum cage dimensions: 1.3 x 3.8 x 2.2m high (double deck) (4' 4-5/8" x 12' 5" x 7' 2" high) Maximum cage payload: 5,450 kg (12,000 lb, nominal 6,100 kg (13,400 lb), allowable at 1/2-speed.


#6 Winze Cage Hoist

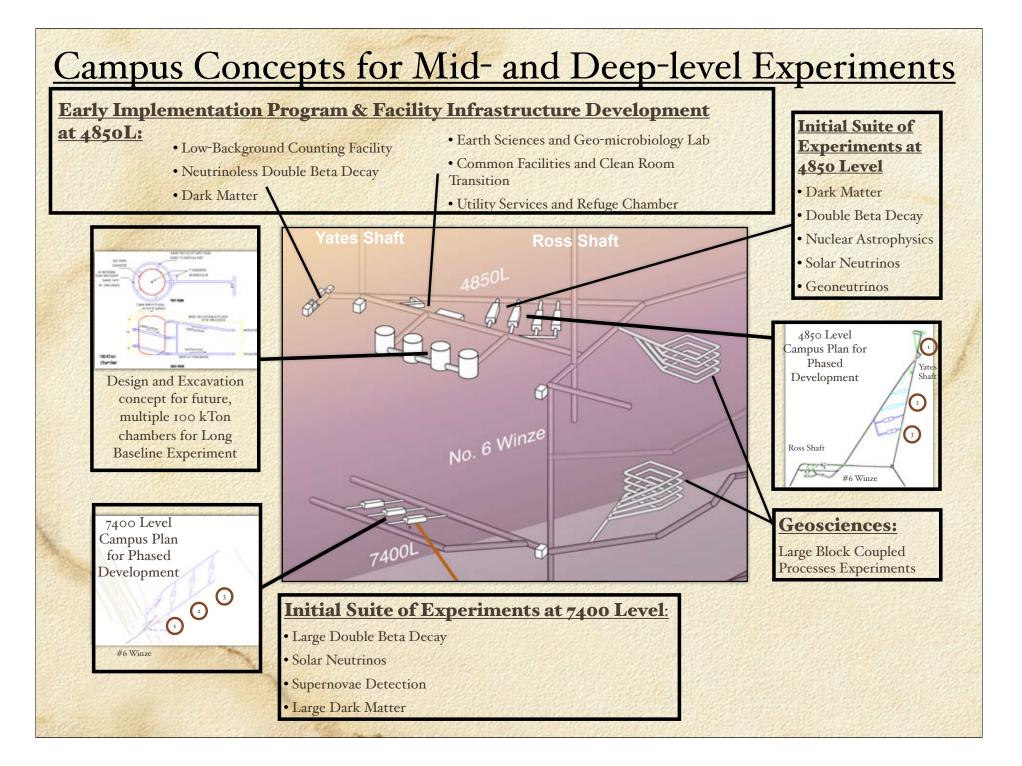
Maximum cage dimensions: 1.3 x 3.7 x 2.2m high (double deck) (4' 4" x 12' 1-1/2" x 2.2m high) Maximum cage payload: 5,450 kg (12,000 lb), nominal 6,400 kg (14,000 lb), allowable at 1/2-speed.


Yates Shaft Upgrade Plan

Improved access to the 4850 Level for personnel, equipment, and utilities



Homestake Interim Lab and DUSEL Summary of Development of Space and Availability (Underground Space Fully Outfitted and Ready for Detector Installation)	Labs, Shops, Offices Usable Floor Area		Excavation Volume (including access drifts)		Construction Schedule				
	sq. ft.	sq. m.	cu. yd.	cu. m.	Start	Finish			
4850 Level Subtotal	107,351	9,973	111,115	84,903					
Ross Shops for Construction Staging	12,469	1,158	5,738	4,385	Apr-08	Dec-08			
Davis Lab, Sanford Lab, and Bio-Geo Lab	15,738	1,462	13,543	10,348	Sep-08	Jul-09			
_ab Module #1 and Common Facilities	26,464	2,459	25,155	19,221	Oct-10	Sep-12			
_ab Module #2	17,560	1,631	21,433	16,377	May-11	Apr-13			
_ab Module #3	17,560	1,631	23,121	17,667	Sep-13	Jul-15			
_ab Module #4 (excavation only, without lab outfitting)	17,560	1,631	22,125	16,906	Aug-14	Jul-15	Harris and y		
7400 Level Subtotal	63,588	5,907	98,477	75,246					
_ab Module #1 and Common Facilities	28,468	2,645	29,594	22,613	Jan-12	Mar-14	1237-1215-5		
_ab Modules #2 and #3 (excavation only, without lab outfitting)	35,120	3,263	68,883	52,633	Dec-12	Jan-14			
300 Level Subtotal	8,668	805	14,007	10,703					
_ab #1, Shops, and E&O Rooms	8,668	805	14,007	10,703	Nov-10	Nov-11		1958-24	
Surface Subtotal	98,000	9,104							
DUSEL Offices and User Support Areas, Phase 1	10,000	929	现时们也在中学	語の言語で、主体	Dec-10	Jun-12			
Sanford Clean Room and Assembly Shop	6,000	557	1.4.1 27.6 2	1123、2月	Dec-10	Jun-12			
DUSEL Offices and User Support Areas, Phase 2	32,000	2,973	South States	NO STRUCT	Jul-11	Jun-13	WALKE SALE &	Sugar	2.2
Sanford Center for Science Education	50,000	4,645	10/10		Sep-09	Sep-11			
Total	277,607	25,790	223,599	170,852				пе	



Campus Development Concepts for Surface Facilities and 300 Level

Yates Complex Surface Facilities:Ross Complex Surface Facilities :• Laboratory Administration Building and Training• Construction Materials and Equipment Staging• User Support Services: Clean Room Assembly & Fabrication Shops• Construction Superintendents and Contractor Offices• R&D Laboratories, User Offices, Meeting Rooms• Maintenance Shops• Education and Outreach: Sanford Center for Science Education• Shipping and Receiving, Storage• Shipping and Receiving, Storage• Facility Site Services and Operations

• Low-background Counting and Calibration Facility

The Initial Suite of Experiments (to be included with Construction Proposal)

DUSEL Construction in FY10 or 11

- □ \$250M for the facility
- \$250M for the Initial Suite of Experiments (experimental equipment)
 - Funds to be made available in 2008 to bring the ISE to the same level of "readiness" as the facility, must be submitted together, multidisciplinary suite
 - Process to establish the ISE to be determined
 - Town Meeting 2 4 November 2007 to begin process

Homestake PIs, Senior Personnel & Coordinators

Michael Barnett, LBNL (E+O)

Yuen-dat Chan, LBNL (Other uses)

Milind Diwan, BNL (lbl, pdk)

Reyco Henning, UNC (ovdbd, dm)

Ken Lande, Penn (lbl, pdk, geo-neutrinos)

Bob Lanou, Brown (neutrinos, solar neutrinos)

Chris Laughton, FNAL (engineering)

Kevin T. Lesko, UCB (physics) PI

Stu Loken, LBNL (E+O)

Richard DiGennaro, LBNL, Project Manager and Systems Engineer

Dianna Jacobs, LBNL Project Controls

Liz Exter, Dave Plate, Project Engineering

Mark Laurenti, Mining Engineer

Syd DeVries, Mining Engineer

Dave Snyder, SDSTA Exec. Director

Trudy Severson, SDSTA

Hitoshi Murayama, UCB (physics theory, neutrinos) DSTA Engineering and Safety Personnel

Tommy Phelps, ORNL (geomicro)

Bill Roggenthen, SDSM&T (geophysics) coPI

Ben Sayler, BHSU (E+O)

Tom Shutt, Case Western (low backgrounds)

Nikolai Tolich, U.W. (geonus)

Bruce Vogelaar, Virginia Tech (solar nus)

Herb Wang, U Wisc. (geology, rock mechanics)

Joe Wang, LBNL (earth science, geophysics)

Ms. Melissa Barclay & Jeanne Miller http://www.lbl.gov/nsd/homestake http://neutrino.lbl.gov/Homestake/LOI http://neutrino.lbl.gov/Homestake/FebWS http://homestake.sdsmt.edu/HRB/Refer.htm http://neutrino.lbl.gov/Homestake