LENS, MINILENS STATUS R. S. Raghavan Virginia Tech For The LENS Collaboration

> TAUP 07 Sendai, Japan Sep 13, 2007

LENS—Low Energy Neutrino Spectroscopy

Tagged ν -capture reaction in Indium-115

$$v_e + {}^{115}In \rightarrow e^- + {}^{115}Sn^* \rightarrow 2\gamma + {}^{115}Sn$$

signal delay Tag cascade

LENS is the only CC detector developed to date for low energy solar neutrinos

R&D Funded now by NSF [Placed in MUST FUND Category by two Review Panels]

Expected Result: Low Energy Solar v-Spectrum

LENS-Sol Signal = SSM(low CNO) + LMA x Detection Efficiency ɛ

pp: ε = 64% ⁷Be: ε = 85% pep: ε = 90%

→ Rate: pp 40 /y /t In
 → 2000 pp ev. / 5y→ ±2.5%
 → Design Goal: S/N ≥ 3

Access to pp spectral Shape for the first time

Science from LENS—Hi precision low energy Nu fluxes (pp \rightarrow 3-4%)

- 1. Neutrino Physics –Energy dependence of P_{ee} → Oscillation Phenomenology
- 2. Solar Luminosity vs Photon Lluminosity— Astrophysics/Neutrino physics
- 3. Gamow Energy of pp fusion—Energy production in sun
- 4. Physics beyond Std model—Sterile Neutrinos from LENS+Source
- 5. Solar model independent Fluxes –CC+NC (LENS + Borexino)

New Technology of LENS

Developed in last three years

Technology and Bgd Control < Towards Hi Precision pp neutrino flux >

• Hi Quality InLS

New Detector Design

 Background Analysis Insights → -115 In decay bgd suppressed →S/N ~3 for first time

	Status
Design of Detector	Cubic Lattice Chamber
InLS: In content Light attenutation L(1/e) Signal Eff Pe/MeV	>8% >8m 900
Indium Mass(1900 pp/5y)	10 ton
Total Mass	125 ton
PMT's	13,300
Neutrino detection eff.	64%

Indium Liquid Scintillator Status

Milestones unprecedented in metal LS technology

LS technique relevant to many other applications

- Indium concentration ~8%wt (higher may be viable)
- 2. Scintillation signal efficiency (working value): 8000 hv/MeV
- 3. Transparency at 430 nm: L(1/e) (working value): 8m
- 4. Chemical and Optical Stability: at least 1 year
- 5. InLS Chemistry Robust

New = LAB based InLS

Basic Bell Labs Patent, Chandross, Raghavan

New Detector Technology –hi event position localization

The Scintillation Lattice Chamber

Light channeling in 3-d totally Demonstration Acrylic Model Internally reflecting cubic Lattice GEANT4 sim. of concept. Test of double foil mirror in liq. @~2bar

3D Digital Localizability of Hit within one cube

- \rightarrow ~75mm precision vs. 600 mm (±2 σ) by TOF in longitudinal modules
- \rightarrow x8 less vertex vol. \rightarrow x8 less random coinc. \rightarrow Big effect on Background
- \rightarrow Hit localizability independent of event energy

Lattice Structure

Single Foil

Double Foil

	TT-			L	EN	S		-
ade	A SALE	Iquiu	SCI		lator	101 2	ula : 1	reuq.
Zheng Ch Richard L Jay Benzi		stian Grieb and nfang Yeh and	u S. Ra xander	ghavan Garnov		Lapt, of Phys Caemistry De Lapt. of Cher	a Tech apt., Pochaven mical En eering	h, Blacksbul National La g, Princeton
		14.19						
AC		ARCHES			VI	кестре		
ynthesis p ed. This pr : liquid-liqu ation of N	-	as been as two special on with high vacuum	Neutraliza	tion H	/A (>98%)	NH4MVA + I	NH4OH	
ion to get InLS can on solvent		m carboxylate. a desired	On-line pu	rification and sol	Ion preparation	TE DO. tokiona		
achieved:	-	e VT recipe,	lix togethe Hesan				Org. Waste	
ontent of erm stabil		cid and	e with	InA	+ NH ₄ CI Add NH ₄ Ac	inC 3		
and and the stand			Solvent ext	action and vacu	evaporation			Concernance of the second

Indium β⁻-Background Discrimination

Background rejection steps for pp detection (other neutrinos detected free of Indium background):

- A. Time/space coincidence in the same cell required for trigger;
- B. Tag requires at least three 'hits';
- C. Narrow energy cut;
- D. A tag topology: multi- β vs. Compton shower;

Classification of events according to hit multiplicity; Cut parameters optimized for each event class improved efficiency;

Results of GEANT4 Monte Carlo simulation (cell size = 7.5cm, S/N=3)	Signal (pp) y ⁻¹ t ln) ⁻¹	Bgd (In) y ⁻¹ (t In) ⁻¹	Reduction by ~3·10 ⁷	
RAW rate	62.5	79 x 10 ¹¹	time/space	
A. Tag in Space/Time delayed coincidence with prompt event in vertex	50	2.76 x 10⁵	coincidence	
B. + ≥3 Hits in tag shower	46	2.96 x 10 ⁴		
C. +Tag Energy = 614 keV	44	306		
D. +Tag topology	40	13 ± 0.6	Tech	

Neutrino Phenomenology – from LENS

In the first 2 years (no calibration with v-source needed):

• Test of MSW LMA physics - *no specific physics proof yet !* P_{ee}(pp)=0.6 (vac. osc.) P_{ee}(⁸B)=0.35 (matter osc.), as predicted?

Non-standard Fundamental Interactions?

Strong deviations from the LMA profile of $P_{ee}(E)$?

Mass Varying Neutrinos?

(see above)

• CPT Invariance of Neutrinos?

so far LMA only from Kamland \overline{V}_e , is this true also for V_e neutrinos"?

• RSFP/ Nu magnetic moments

Time Variation of pp and ⁷Be signals? (No Var. of ⁸B nus !)

(Chauhan et al JHEP 2005)

Raghavan—TAUP07-9-12-07

Low Energy Neutrinos:

Only way to answer these questions !

Solar Luminosity: Neutrino vs. photon

Measured *neutrino* fluxes at earth + oscillation physics \Rightarrow nuclear reaction rates \Rightarrow energy release in the sun

$$L_{v-inferred} \stackrel{?}{=} L_{hv}$$

Solar luminosity as measured by *photon* flux

Will be met under these conditions:

- 1. Fusion reactions are the *sole* source of energy production in the sun
- 2. The sun is in a quasi-steady state (change in 40,000 years is negligible)
- 3. The neutrino oscillation model is correct & no other physics involved;

From a single detector:

Test of astrophysics, solar model; Test of neutrino physics (LMA-MSW at low E, NSI, mass-varying vs, Θ_{13} ...);

Neutrino inferred Luminosity of the Sun -Experimental Status

Main contributions:	рр	0.91	
		⁷ Be	0.074
		(CNO	0.014)
		⁸ B	0.00009

Measured neutrino fluxes at the earth:

⁸B(SK, SNO) known very well⁷Be + ⁸B(CI) sensitive mostly to ⁸Bpp + ⁷Be + ⁸B (Ga)(Borexino, Kamland – in the future)

 \Rightarrow in principle can deduce pp-v flux

Problem: disentangling fluxes from individual neutrino sources

Experimental status – No useful constraint!

$$L_{v(\text{inferred})} / L_{hv} = 1.4 \begin{pmatrix} 0.2 \\ 0.3 \end{pmatrix}_{\sigma} \begin{pmatrix} 0.7 \\ 0.6 \end{pmatrix}_{\sigma}$$

$$L_{v(\text{inferred})} / L_{hv} = 1.2(0.2)$$

J.N.Bahcall and C.Peña-Garay, JHEP 0311, 4 (2003)

R.G.H.Robertson, Prog. Part. Nucl. Phys. 57, 90 (2006)

Temperature in the Solar Core impacts Neutrino *Energies, not just relative fluxes*

Relative kinetic particle energies add to the Q-value of capture and fusion reactions.

Not all energies contribute evenly:

pp-fusion: Gamow Peak at 5.2 keV pp endpoint shifted up by~5.2keV $E_0 = 5.91 keV \cdot (T/1.5 \cdot 10^7 K)^{\frac{2}{3}}$

⁷Be electron capture: maxwellian energy distribution shifts mean energy of ⁷Be v line by Δ <E> ~ 1.29 keV

pp- and pep neutrino production temperature and related Gamow peak energy:

J.N. Bahcall, Phys. Rev. D 49(8), 3923 (1994)

pep: combination, delta $\Delta < E > \sim 6.6$ keV

hep: $E_0 = 10.73 keV \cdot (T/1.5 \cdot 10^7 K)^{\frac{2}{3}}$

J.N. Bahcall, *Phys. Rev. D* 44(6), 1644(1998) havan—TAUP07-9-12-07

Probing the Temperature Profile of Energy Production in the Sun with LENS

Conclusion: Slightly improved LENS can detect the predicted Gamow shift in the pp-v endpoint $\Delta E=5.2$ keV with 95% confidence.

- Raynavan-1701 07-3-12-07

Sterile Neutrinos – Physics beyond the Standard Model

•Fourth (fifth) mass state with high mass splitting triggered by LSND appearance of $\overline{v_e}$ from $\overline{v_{\mu}}$ beam at *short* base line ~30m!

```
•Implies \Delta m^2 \sim 1 eV^2
```

Also motivated from cosmology

LENS Sterile

Cr source inside LENS

Active - Sterile Neutrino Oscillations in LENS

Survival probability of v_e :

Statistical precision of oscillation parameter measurement in LENS

Active – Sterile Oscillation Sensitivity with LENS

C. GRIEB, J. M. LINK, AND R. S. RAGHAVAN

PHYSICAL REVIEW D 75, 093006 (2007)

Solar Nu's –Contd: Model independent fluxes **Borexino & LENS Borexino Signal** $(CC + NC) V_e + V_x$ **LENS Signal** (CC)) V_{e} only

→Possibility of obtaining solar neutrino
 →Fluxes independent of Solar models

MINILENS

Final Test detector for LENS

Goals for MINILENS

- Test detector technology

 → Medium Scale InLS production
 → Design and construction
- Test background suppression of In radiations by 10⁻¹¹
 - → Expect ~ 5 kHz In β-decay singles rate; adequate to test trigger design, DAQ, and background suppression schemes
- Demonstrate In solar *signal* detection in the presence of high background (via "proxy")

Direct blue print for full scale LENS

Proxy pp-v events in MINILENS

Proxy pp nu events in MINILENS from cosmogenic ¹¹⁵In(p,n)¹¹⁵Sn isomers

- Pretagged via μ , p tracks
- Post tagged via n and 230 μ s delay
- → Gold plated 100 keV events (proxy pp), Tagged by same cascade as In-v events
- → Demonstrate In-v Signal detection even in MINILENS

The Kimballton Underground Facility

Depth 1400 mwe

LENS Collaboration (Russia-US: 2007)

Russia:	INR (Moscow): I. Barabanov, L. Bezrukov, V. Gurentsov,
	V. Kornoukhov, E. Yanovich;

U. S.: R. L. Hahn, M. Yeh; BNL: Indiana U. **Rex Tayloe** U. North Carolina: A. Champagne; North Carolina State: Albert Young J. Blackmon, C. Rascoe, Q. Zeng; Louisiana State: J. Benziger; Princeton U. : South Carolina State: Z. Chang, Virginia Tech: C. Grieb, M. Pitt, R.S. Raghavan, D. Rountree, **R.B. Vogelaar**;

