Short gravitational wave signal searches in TAMA300 data : stellar core collapse and black hole

Nobuyuki Kanda TAMA collaboration @ TAUP2007, 11th Sep. 2007, Sendai

> Special Thanks to M.Ando, T.Akutsu, R.Honda and Y.Tsunesada

TAMA's searches for Short GW

- 1. Stelar-core collapse (SN) : Burst GW
 1-1 Excess Power Filter
 - 1-2 ALF
 - 1-3 TF-Cluster
- 2. Black-hole quasi-normal mode : Ringdown GW
 Matched filter
- 3. Keyword for short signal searches

Observational runs and data

Data Taking	period	actual data amount	<u>remarks</u>	
DT1	8/6 - 7/1999	~3 + ~7 hours continuous lock	first whole system test	
DT2	9/17 - 20/1999	31 hours	first Physics run	
DT3	4/20 - 23/2000	13 hours		
	8/14/2000	World best sensitivity	h ~ 5x10 ⁻²¹ [1/√Hz]	
DT4	8/21 - 9/3/2000	167 hours	stable long run	
DT5	3/1 - 3/8/2001	111 hours		
Test Run 1	6/4 - 6/6/2001	Longest stretch of continuous lock is 24:50	keep running all day	
DT6	8/1 - 9/20/2001	1038 hours duty cycle 86%	full-dressed run	
DT7	8/31 - 9/2/2002	24 hours with duty cycle 76.7%	Recycling, h ~ 3x10 ⁻²¹ [1/√Hz], Simultaneous obs with LIGO & GEO	
DT8	2/14 – 4/14/2003	1168 hours, duty cycle 81.1%	coincidence obs with LIGO S2	
DT9	10/31(Actually 11/28)/2003 – 1/5/2003	558 hours, (weekday: night time, weekend: full time)	partial coincidence run with LIGO S3 'crewless' operation	

1. Burst Gravitational Waves from Stellar-core collapse Numerical Simulation Predicts GW Waveform

Komatsu et al. (1989) Zwerger & Müler (1997) Dimmelmeier et.al., (2001,2002)

TAMA300 Sensitivity : Range of Detection for Burst GW from Stellar-Core Collapse

GW signals by Dimmelmeier, et al. (2002)

1-1. Excess Power Filter

Burst filter: Excess-power filter

Evaluate signal power in given time-freqency regions

Few assumptions for signal ... time-frequency bands Robust for waveform uncertainties

> Selected parameter: ∆*t* = 12.8 [msec] ∆*f* = 2300 [Hz]

by M.Ando (Tokyo Univ.)

Upper-limit results

Event candidates

Event-selection threshold : SNR>2.9

Detection efficiency : 1x10⁻⁵
Observation result : 7x10⁻² events/sec

• Upper limit

by M.Ando Phy. Rev. D71, 082002 (2005)

1-2. ALF (Alternative Linear Filter)

A slope value of a raw of data (N samples) is used to trigger an event. When there is a white noise, a slope value is low. If there is a burst signal, a slope value will be high.

by Tomomi Akutsu (ICRR, Tokyo Univ. / Osaka City Univ.),

Figure 6. Rate limit for GW amplitude $h_{\rm rss}$. A vertical axis and a horizontal axis are a rate limit [events/day] with a confidence level 90 % and $h_{\rm rss}$ amplitude, respectively. At the level of $h_{\rm rss} = 10^{-17}$, we obtained 0.55 events/day of upper rate limit with 90 % confidence level.

U.L. for h_{rss}>10⁻¹⁷ 0.55 [events/day] , C.L.90%

by Tomomi Akutsu, et al. Class. Quantum Grav. 23 (2006) S715

1-3 TF (Time-Frequency) - cluster

Example

Clustering (recognization of connected region)

peak hight : $P(t_0, f_0)$ cluster threshold : P (t₀,f₀)^{1/2} f_0

cluster characteristics parameters :

t1

$$S = \sum_{t,f} 1$$
$$V = \sum_{t,f} P(t, f)$$

$$t1s = \frac{\sum t}{S} \quad t1v = \frac{\sum tP(t,f)}{V}$$

$$t2s = \frac{\sum (t-t1s)^2}{S} \quad t2v = \frac{\sum (t-t1v)^2 P(t,f)}{V}$$

$$t3s = \frac{\sum (t-t1s)^3}{S(t2s)^{3/2}} \quad t3v = \frac{\sum (t-t1v)^3 P(t,f)}{V(t2v)^{3/2}}$$

$$t4s = \frac{\sum (t-t1s)^4}{S(t2s)^{4/2}} \quad t4v = \frac{\sum (t-t1v)^4 P(t,f)}{V(t2v)^{4/2}}$$

t₀

TF-cluster : Event Selection exclude TAMA noises f1s vs f2s t1s/S vs f1s/S

$-2.0 \le f1s \le 2.0$ $f2s \le 5.0$ $(t1s^2+f1s^2)^{1/2}/S \le 0.15$

Efficiency and Selected Events

number of events

efficiency = 86 % within 10pc (SNR > 70)

N = 152 event for 1.26 x 10^5 sec data

Rate = N / (T x efficiency) = 1.4×10^{-3} events/sec

= 4.9 events/hour

by R.Honda (Osaka City Univ.), Master Thesis, Feb. 2007

2. Ringdown GW from black-hole quasi-normal mode

 $h(t) = \exp(-\pi f_c t/Q) \sin(2\pi f_c t)$

$$\begin{array}{ll} \mbox{central frequency} \\ \mbox{Quality factor} \end{array} & f_c = \frac{3.2 \times 10^4 [{\rm Hz}]}{M/M_\odot} \begin{bmatrix} 1 - (1-a)^{0.3} \end{bmatrix} \mbox{Echeverria (1989)} \\ M: \mbox{Mass} \\ \mbox{a: Spin} \end{array}$$

- * Probe for BH direct observation
- * BH physics in inspiral-merger, core collapses, ...
- * Good SNR expected, ~ 100@10kpc (TAMA sensitivity)

by Y.Tsunesada (NAO, Tokyo Institute of Technology)

Matched Filter Design for BH Ringdown

$$\rho = \int \frac{s(f)h^*(f; f_c, Q)}{S_n(f)} \mathrm{d}f$$

s(f): signal + noise h(f): template Sn(f): Weight (noise power)

Template construction in (fc, Q) plane (Nakano, Takahashi, Tagoshi, Sasaki, PRD 2003)

by Y.Tsunesada

Trigger Rate of the Ringdown Search

by Y.Tsunesada

BH Mass Spectroscopy ...

- Ringdown GW detection can measure;
 - Q = Kerr parameter
 - fc = Mass of BH

Q^M	$(\Delta f_c/f_c)_{\rm RMS}$	$(\Delta Q/Q)_{\rm RMS}$	$(\Delta M/M)_{\rm RMS}$	$(\Delta a/a)_{\rm RMS}$
All	1.3 (1.2)%	22 (16) %		
2.55	8.1 (2.6)	22 (16)	22 (12) %	64 (35) %
4.41	4.0 (1.6)	24 (16)	13 (6.6)	41(35)
7.70	1.6 (1.0)	21 (16)	6.8 (3.9)	39 (36)
13.6	0.77 (0.58)	19 (16)	3.1 (2.4)	40 (36)
24.0	0.39 (0.33)	19 (17)	1.9 (1.6)	41 (37)

Tsunesada, Kanda et al. Phys.Rev.D 71, 103005 (2005)

- 3. Keyword for short signal searches
- Different types of 'waveforms' and search methods
 - Burst : only numerical predicted, power filter
 - Ringdown : anlytical prediction, matched filter
- Even so, there are same noise sources !
 - Spike, Glitch, Steps...
 - Non-Gaussianity
 - Instabilit

Short GW search requires 'silent detector'.

Summary

- TAMA searched for short GW signals, and derive upper limits:
 - Burst GW
 - Excess power filter, ALF, TF cluster
 - BH ringdown GW
 - Matched Filter
- The data analysis evaluated a kind of TAMA detector noise characteristics.