Diffuse high-energy neutrino searches in AMANDA-II and IceCube 9 strings

Kotoyo Hoshina for the IceCube Collaboration

Sound: Payor Pre

TAUP 2007 in Sendai

Event Detection Strategy

• Target neutrinos :

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\downarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

(similar for π^-, K^\perp)

- Detect muons generated from neutrinos via Charged Current interaction
- Choose up going events to reject atmospheric muons (apply quality cuts)

Detection Mechanism

Digital Optical Module (DOM) for IceCube

Observables

- Hit timing (Direct Hit, Hit) +
- Number of Hit OMs (Nch)
- Charge / waveform

Used for track reconstruction, Number of Direct Hit (Ndir) indicates reconstruction quality

Used as energy estimator waveform can be used for track reconstruction (not this analysis)

What is Diffuse Neutrino Search ?

- Astrophysical point source search (See T.Montaruli's talk in this session)
 - Observe multiple events from same source
 - Needs good angle resolution
- Atmospheric Neutrino study (see P.Desiati's talk on Thursday)
 - Uses low energy sample
 - Need statistics
- Diffuse high-energy source search
 - Uses energy-related parameter to investigate excess from Atmospheric Neutrino events
 - Event selection : optimized to extract
 high-energy sample
 fewer Atmospheric Neutrino event in final sample

Analysis Strategy

- i. Reject all background muons then Search best Nch_{cut}
- ii. Apply Nch cut (Nch>Nch_{cut}) then compare number of survived events with Monte-Carlo prediction

AMANDA-II

Event selection : Preparing neutrino induced events Quality cuts (examples) Data 2000 - 2003

10⁴

10³

10²

10

10⁻¹

- Require enough number of Direct Hit which close to the expected hit time for the reconstructed track Events (Ndir cut)
- Hits should distribute smoothly along with the reconstructed track
- Require long enough track
- Remove horizontal events

AMANDA-II 807days Diffuse Analysis Nch distribution after final selection

AMANDA-II 807 days Diffuse Analysis **Upper Limit** Paper Published! Physical Review D 76, $E^{-2} < 7.4 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ 042008 (2007) **10**⁻⁴ AMANDA-II 2000 atms. v_u data (prelim.) E^{2} dN/dE [GeV cm⁻² s⁻¹ sr⁻¹ Barr et al. atms. v + prompt atms. vHonda et al. atms. v + prompt atms. v**10**⁻⁵ Max uncertainty in atms. v Frejus MACRO AMANDA B-10 1997 v_{μ} diffuse **10**⁻⁶ AMANDA-II 2000 Cascades (all-flavor / 3)* AMANDA B-10 1997 UHE (all-flavor / 3)* Baikal 1998 - 2002 (all-flavor / 3)* **10**⁻⁷ RICE 1999-2005 (all-flavor / 3)* AMANDA-II 2000 unfolding (prelim.) AMANDA-II 2000-2002 UHE limit (prelim.) **10⁻⁸** AMANDA-II 2000-3 v_u limit W&B limit/2 (transparent sources) Full IceCube 1 yr * assumes a 1:1:1 flavor ratio at Earth **10**⁻⁹ 7 8 9 log₁₀ [E, (GeV)] 5 6 3 4

IceCube 9 strings **I 37**days analysis

Ξ

11

IceCube

Amanda

59

IceCube 9 (IC9) vs AMANDA

- 3~4 times larger detector volume
- 3~4 times wider string intervals
- Similar number of Optical Sensors

2~4 times larger effective area (10⁵ ~ 10⁶GeV)
90% energy range shifts to higher energy

Event selection : Preparing neutrino induced events Data Nch < 46 is already unblinded for Atms.Nu study

Low Nch data sample is compared with MC

Number of event after final cut (Nch<46) Data : 52 event Background MC : 60 ± 5 (Bartol) (54 ± 4 : Honda 2006)

Nch distribution After final selection

IceCube 9 string ~ I 37days Scale factor of test flux vs Nch cut threshold

 Scale factor is very flat between Nch_{cut} ~30 and 50

Choose Nch_{cut} = 46 to get sensitivity

Diffuse Muon Neutrino Sensitivity of IC9 137 days (2006) $E^{-2} < 1.3 \times 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

IC9 137days sensitivity is factor 2 above AMANDA-II 807days in 2007 integrated IceCube exposure exceeds AMANDA-II 4yr

Summary

 AMANDA-II 807days upper limit on the diffuse flux of muon neutrino with a A_{const}E⁻² spectrum for the energy range 16 TeV to 2.5PeV is

 $E^{-2} < 7.4 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

- Monte-Carlo verification for IceCube 9 string has done with Nch<46 low energy data. MC data shows reasonable agreement with the data sample.
- The sensitivity of IceCube 9 string 137days on the diffuse flux of muon neutrino with a $A_{const}E^{-2}$ spectrum for the energy range from 25TeV to 10PeV is $E^{-2} < 1.3 \times 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

which is factor 2 above AMANDA-II 807days.

Outlook

Physics run of IceCube 22 started in 5/23

- Detector Volume : x 2~3 of IC9
- Accumulted Livetime : ~3month by now
 - Analyses for 22 string is now in preparation

AMANDA effective area

Azimuth distribution

Atms.Nu model difference

Bartol

Honda (2006)

HitDistance vs CosZenith

