

IceCube

First results of the IceCube Observatory on High Energy Neutrino Astronomy

Teresa Montaruli* for the IceCube Collaboration

* at University of Wisconsin - Madison <u>tmontaruli@icecube.wisc.edu</u>

TAUP 2007, Sep. 12, Sendai, Japan

Contents

- Steady point source searches:
 - AMANDA-II published results
 - New method: unbinned likelihood
 - AMANDA-II Results on point-source searches (2005 unblinded, 2006 these days)!
 - IC9 results
 - foreseen performance of IC22, IC40, IC80
- Time dependent searches:
 - GRBs
 - MWL campaigns

IceCube Accumulated Exposure with time

AMANDA-II Skymap

Flux limits and sensitivities

An example of interpretation: X-Ray Binaries

2005-6 AMANDA-II and IceCube analysis

- likelihood method utilizes event direction, detector PSF and energy estimator (eg Nch)
- improves up to 40%
- time dependent LH can be introduced (eg lightcurve from X-ray, TeV, optical telescopes)

- In preparation: 1997-99 (AMANDA BI0)+2000-6 (AMANDA-II)
- IC9 presented at ICRC07
- now working on IC22

LH method

Source hypothesis in IC9 analysis uses individual point spread functions for each event, based on angular uncertainty estimate of track reconstruction. 2D gaussian approximation works also well.

Background hypothesis based on declination distribution of data events (i.e. scrambled in right ascension) to correctly account for all backgrounds

Spectra reconstruction using Pi(Nch|spectral index)

$$P_i(x, n_s) = \frac{n_s}{N} S_i(x) + \frac{n - n_s}{N} B_i(x)$$

Likelihood function

$$L(n_s) = \prod P_i(x_i, n_s)$$

- Log Likelihood Ratio
$$\log \lambda = \frac{\log L(\hat{n}_s)}{\log L(n_s=0)}$$

1st IceCube data Sky Map

The maximum deviation is 3.35 sigma, at r.a. = 276.6° , dec = 20.4° .

Random clustering of background: **60%** of simulated background trials (data scrambled in right ascension), have a maximum deviation (anywhere) of **3.35 sigma** or greater.

Largest deviation from background: sigma = 1.77 (one-sided p-value = 0.04), in the direction of the Crab Nebula when looking at IC9 26 source list.

Chance to obtain a p-value of 0.04 or lower with 26 independent trials is 65%.

137 d IC9 Averaged Sensitivity (E⁻² ν_{μ}): 12 x 10⁻⁸ (E/GeV)⁻² GeV⁻¹ cm⁻² s⁻¹ 1001 d AMANDA-II Averag. Sensitivity ($E^{-2} v_{\mu}$): 5 x 10⁻⁸ (E/GeV)⁻² GeV⁻¹ cm⁻² s⁻¹ (sys error ~15%)

Results: Source List Search

Object	(r.a. , d	ec)	:	sigma	n _s est.	n _s	90% C.L. upper limits Φ
MGRO J2019+37	(304.8, 3	6.8)	:	0.00	0.0	2.8	12.7
Cyg 0B2/TeV J2033+4130	(308.3, 4	1.3)	:	0.23	0.2	2.9	14.0
Mrk 421	(166.1, 3	8.2)	:	0.00	0.0	2.9	13.1
Mrk 501	(253.5, 3	9.8)	:	0.00	0.0	2.7	11.5
1ES 1959+650	(300.0, 6	5.2)	:	0.00	0.0	3.3	14.6
1ES 2344+514	(356.8, 5	1.7)	:	0.00	0.0	2.8	11.4
H 1426+428	(217.1, 4	2.7)	:	0.00	0.0	3.0	14.5
BL Lac (QSO B2200+420)	(330.7, 4	2.3)	:	0.28	0.4	3.2	15.7
3C66A	(35.7,4	3.0)	:	0.00	0.0	3.0	13.3
3C 454.3	(343.5, 1	6.1)	:	1.08	0.7	3.6	14.4
4C 38.41	(248.8, 3	8.1)	:	0.00	0.0	2.8	12.6
PKS 0528+134	(82.7, 1	3.5)	:	0.00	0.0	2.8	10.3
3C 273	(187.3,	2.0)	:	0.00	0.0	2.5	11.0
M87	(187.7, 1	2.4)	:	0.67	0.5	3.2	11.4
NGC 1275 (Perseus A)	(50.0, 4	1.5)	:	0.00	0.0	2.8	13.4
Cyg A	(299.9, 4	0.7)	:	0.41	0.4	3.0	14.5
SS 433	(288.0,	5.0)	:	0.12	0.1	2.4	8.2
Cyg X-3	(308.1, 4	1.0)	:	0.51	0.4	3.0	14.5
Cyg X-1	(299.6, 3	5.2)	:	0.52	0.4	3.0	12.2
LS I +61 303	(40.1, 6	1.2)	:	0.00	0.0	3.2	14.2
GRS 1915+105	(288.8, 1	0.9)	:	0.00	0.0	2.8	9.8
XTE J1118+480	(169.6, 4	8.0)	:	0.00	0.0	2.8	12.4
GR0 J0422+32	(65.4, 3	2.9)	:	0.65	0.8	3.1	13.5
Geminga_98.48	(17.8,	0.6)	:	0.65	0.8	3.0	16.4
Crab Nebula	(83.6, 2	2.0)	:	1.77	1.6	5.2	21.8
Cas A	(350.9, 5	8.8)	:	0.67	0.5	4.4	19.9

None of the a priori source locations shows Φ Flux Units: 10⁻¹¹ (*E* / TeV)⁻² TeV⁻¹ cm⁻² s⁻¹ significant excess 11

IC9 (2006-7), IC22 (2007-8), IC40 (2008-9), IC80 (2010-11)

L Eraction 6.0 8.0 0.7 0.6 0.5 **IC80** 0.4 IC22 0.3 IC9 0.2 0.1 2 3 4 5 Ψ[°]

IC22, IC80 analysis not optimized yet (reconstruction and cuts optimized for IC9), nonetheless ang res already for IC22 much better than for IC9 (median 1.5° compared to 2° in IC9) In 2008 IC40 will collect about 12000 atm neutrinos/yr and the background in a bin of

radius 1.5° is 4 ev/yr (> 1 TeV => 1.8 ev/yr). The sensitivity will improve by about 8 respect to IC9.

IC80 eff area will be about 1 order of magnitude larger than IC9

The low energy core of IceCube: AMANDA

- Larger event rates for galactic sources: 10% more events for source cut-off at 3-10 TeV for IC22+AMANDA than IC22 standalone.
- Threshold at about 30 GeV, good for atmospheric neutrino studies. For pointsources increased background BUT better angular resolution
- Using IceCube as VETO possible identification of neutrinos interacting in the inner core detector.

GRBs in IceCube

 Online Filter (>Jun 2007): all data in ± 1 hr around GCN alert transferred to North

IC80

3σ sensitivity for Waxman-Bahcall GRB flux with ~100 (~300) detected bursts in muon (cascade) channel

```
(GLAST ~200 bursts per year, 4 \pi)
```

SWIFT 100/yr

FoV (sr) PSF Band Operati Integral IBIS 0.02 12' 15 keV – 10 MeV Oct '0 Swift BAT 1.4 15' 15 – 150 keV Nov '0 Agile SuperAgile 1 6' 15 – 60 keV Jun '0 mCal N/A N/A 300 keV – 100 MeV Apr '0						
Integral IBIS 0.02 12' 15 keV – 10 MeV Oct '0 Swift BAT 1.4 15' 15 – 150 keV Nov '0 Agile SuperAgile 1 6' 15 – 60 keV Jun '0 mCal N/A N/A 300 keV – 100 MeV Apr '0 GLAST GBM 9.5 1.5° 8 keV – 30 MeV Apr '0			FoV (sr)	PSF	Band	Operation
Swift BAT 1.4 15' 15 – 150 keV Nov '0 Agile SuperAgile 1 6' 15 – 60 keV Jun '0 mCal N/A N/A 300 keV – 100 MeV Jun '0 GLAST GBM 9.5 1.5° 8 keV – 30 MeV Apr '0	egral I	al IBIS	0.02	12'	15 keV – 10 MeV	Oct '02 -
Agile SuperAgile 1 6' 15 – 60 keV Jun '0 mCal N/A N/A 300 keV – 100 MeV GLAST GBM 9.5 1.5° 8 keV – 30 MeV Apr '0	/ift E	BAT	1.4	15'	15 – 150 keV	Nov '04 -
mCal N/A N/A 300 keV – 100 MeV GLAST GBM 9.5 1.5° 8 keV – 30 MeV Apr '0	ile S	SuperAgile	e 1	6'	15 – 60 keV	Jun '07 -
GLAST GBM 9.5 1.5° 8 keV – 30 MeV Apr '0	r	mCal	N/A	N/A	300 keV – 100 MeV	,
	AST (ST GBM	9.5	1.5°	8 keV – 30 MeV	Apr '08 -
LAT 2.4 15' 20 MeV – 300 GeV	L	LAT	2.4	15'	20 MeV – 300 GeV	

Multi-wavelength programs

☆Offline Programs: many offline analyses, SGR1806-20 Dec 2005 flare, WIYN-VERITAS-IceCube, HESS sources with muons from gammas, Milagro data, and many more GLAST Guest Investigator proposals Cycle 1:GRBs with GBM data, transient sources with LAT data

 ☆ Online programs:
☆ Neutrino alerts: NToO test run AMANDA-Magic and proposal of ToO for GRBs and SNe with networks of Optical Telescopes
☆ SN collapse - IceCube should enter SNEWS this year

Optical follow-up for neutrino events

Kowalski & Mohr, astro-ph/0701618

- v event direction reconstructed online and if energy or multiplicity > a given threshold a notice is sent to a network of optical telescopes
- t₀ can be reconstructed from light curves with precision < 1d from GRB afterglows and SNe light curves
- Rate of doublets of atm. neutrino backg. for max separation of 3° and Δt = 100 s => 30/yr hence follow-up feasible

ROTSE-III: 4 automated telescopes would cover > 80% of IceCube PSF for doublets

Conclusions

IC22 science run now under way: expected to deliver 10 months lifetime sensitivity: ~ x4 AMANDA-II (1001d) IC40 (April 2008) will be 1/2 completed. detector and angular resolution close to optimal Beginning of 2009: km3 yr integrated exposure