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  17 m between modules
~30 m string separation
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Understanding the background
Need to understand atmospheric neutrinos where

cosmic signal is expected

~ Eprim (TeV)
5.0 50.0 500.0 5,000.0

counter

404nm CW laser

light
blocking
brushes

Preliminary

(statistical errors)

• uncertainties on CR spectrum & composition
• uncertainties on hadronic interaction models
• atmosphere properties
• ice optical properties• µ background                                    (~106 times νµ events)

• mis-reco atmospheric bundles (~103 times νµ events)
• coincident events                     (~10   times νµ events)

> Eµ (TeV)
0.2 0.44 0.74 1.1 1.6 2.1 2.8 3.7

> Eprim (TeV)
0.8 1.8 3.0 4.4 6.4 8.4 11.2 14.8

Constrain measurements at low energy

P. Desiati - ICRC 2003
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Rejecting the background : AMANDA-II

J. Braun

νµ event selection:

• high likelihood of up-going tracks
• good angular resolution
• smooth hit distribution along tracks

• background contamination
• ~10% for θ>100o

• energy threshold ~50-100 GeV

Theoretical uncertainties

~ 30 % in normalization

2005

~ 200 days

θ>  80o  6001  exp events
θ>100o   887 exp events
             1013 sim events

2006

Neutrino effective area

PRELIMINARY

PRELIMINARY
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Rejecting the background : IceCube-9

2006

J. Pretz - ICRC 2007

νµ event selection:

• number of non-scattered photons >= 10
• distance of hits along the track >= 250 m

• cuts designed for 95% neutrino purity
• ~3% atmospheric neutrino efficiency
• still ~20-30 background contamination

• energy threshold ~100 GeV

Phys.Rev.D76:027101,2007

137.4 days

θ>100o   234 exp events
               211 ± 76.1(syst)
                      ± 14.5(stat)

Neutrino effective area
Energy response
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Measuring atmospheric νµ in IceCube-9

J. Pretz

• ~20-30% uncertainties in atmospheric neutrino modeling

• contamination at horizon of lower quality background events

Phys.Rev.D76:027101,2007

J. Pretz - ICRC 2007
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Measuring the atmospheric νµ spectrum

K. Münich - ICRC 2007

J. Zornoza - ICRC 2007

PRELIMINARY

• measure photons from muon stochastic energy loss
• correlate number of photons with muon energy
• correlate photon density with expected PDF

use µ track length where no stochastic losses 

Number of hit cannels
Total charge
Reconstructed photon density 

IceCube-9

D. Chirkin - ICRC 2007

*

* Honda2004
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νe

contained νe

νe

contained νe

Trigger level first selection level

M. D’Agostino

νe event selection:

• background rejection more critical
• different signal / background rejection
  strategies under investigation

• spherical hit topology
• high value of L(cascade)/L(track)
• reconstructed track-like θ on all events

• energy threshold ~100 GeV

PRELIMINARY STUDY

Rejecting the background : IceCube-22

first level background
rejection study

all νe+ νe

contained νe+ νe
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Low energy atmospheric neutrinos

 

30 GeV < Eν < 100 GeV

Neutrinos < 100 GeV generally
better understood : constrain
normalization at low energy to
reduce systematics at high energy

• The denser AMANDA-II array embedded
  within the coarser IceCube array lowers
  energy threshold

• contained and partially-contained tracks

• vertical tracks close to 1km-long strings

• “easier” background rejection
• veto with external IceCube strings
• veto with upper sensors (down ν)
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Neutrino oscillations
At ~30 GeV ν marginally affected by
standard oscillations : systematics

With ~30 GeV threshold only up-ward
neutrino tracks have chance to
oscillate

CC Interaction

µ    
         

10m

  νµ

• measure contained events versus cosθ
• µ angular resolution & νµ - µ angle at low energy
• threshold effects

• measure L/Eν for vertical tracks
• νµ - µ kinematic issues
• energy resolution
• statistical analysis

(Albuquerque and Smoot, Phys Rev D64, 053008)
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Neutrino oscillations in AMANDA-II

T. Becka - 2002

Eν > 50GeV

Influence of Δm2 on atmospheric neutrino
flux for Eν > 50 GeV and for maximal
mixing angle is very small and dominated
by statistics and experimetal resolution

• Oscillations affect marginally our data
  at the threshold

• need large statistics & lower threshold

• systematics important
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Standard oscillations Alternative oscillation scenarios

Quantum decoherence
∝E2 model, α = 4·10-32

Violation of Lorentz Invariance
δc/c = 10-27

non standard effects :

• Quantum Decoherence
• flavor eigenstates decohere through
  interaction with a foamy
  quantum-gravitational space-time

astro-ph/0412618

• Violation of Lorentz Invariance
• different speed for different flavors

• Violation of Equivalence Priciple
• non-universal coupling to gravitational
  field

hep-ph/0502223
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Alternative oscillation scenarios in AMANDA-II

J. Ahrens, J. Kelley - ICRC 2007

Standard + VLI oscillations :

• Δm2 = 2.3·10-3 eV2

• Θm = π/4 

No evidence of oscillation :

δc / c < 5.3·10-27 (90% CL)
for Θc ≈ ± π/4 (max mixing)
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High energy atmospheric neutrinos
Atmospheric neutrinos depend on

• primary cosmic ray flux
• atmospheric profile
• rigidity cutoff (low energy only)

• hadronic interaction model
• π/K contribution
• charm production

νµ+νµ

T. Gaisser

Muon neutrinosElectron neutrinos

T. Montaruli
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Charm production in the atmosphere

• charmed mesons in the atmosphere produce flatter prompt spectrum

• big uncertainties due to lack of direct data in forward regime

• AMANDA-II have put limits on various models

• use also huge cosmic µ statistics : issues with multiplicity and lateral distribution

J. Hodges, G. Hill
AMANDA-II 2000-03

Physical Review D 76, 042008 (2007)

• AMANDA-II highest sensitivity
  @ 100 TeV

• IceCube will increase
  significantly event statistics

• able to probe charm production

cosmic neutrino
signal region
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Charm production in the atmosphere
• cross section very uncertain : lack of direct
  measurements

• data have harder xF distribution than
  DPMJET-II (pQCD prediction)

• better meson D description in DPMJET-III

• improvement in DPMJET-III for asymmetry
  in target fragmentation region for baryon (P.

   Berghaus, T. Montaruli, J. Ranft)

• big spread among interaction models,
  especially for the Λ particles

• charm production to be incorporated in
  other models

• need more benchmark of existing codes
P. Berghaus, J. Ranft, T. Montaruli

first iteraction
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Conclusions and remarks

• IceCube will collect unprecedented atmospheric neutrino statistics

• important high energy irreducible background for neutrino telescopes

• with AMANDA-II dense core and dedicated analysis techniques the
  energy threshold can be lowered down to ~30 GeV : lower theoretical
  uncertainties and marginally affected by standard oscillations

• high energy neutrinos to probe non-standard oscillation scenarios

• possible to probe interaction models and cosmic ray composition

• high energy hadronic models play important role in neutrino telescopes

• charm production suffers large uncertainties. Improvements underway.
  Need to benchmark models and wait for measurements from
  dedicated experiments
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Spare slides
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Where are we ?

South Pole

Runway

AMANDA-II

Amundsen-Scott South Pole Station

IceCube string 21 : deployed 01/2005

IceCube +8 strings deployed 12/05 – 01/06

IceCube +13 strings  deployed 12/06 – 01/07
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Detection principle
O(km) long µ tracks 

   ~17 m

O(10m) cascades 

a neutrino telescope

Θµν≈0.65o⋅(Eν/TeV)-0.48

(3TeV<Eν<100TeV)

if energy is > few TeV muon points to neutrino direction

neutrino astronomy is possible

ice properties very important
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Atmospheric neutrinos in IceCube

IceCube will detect a large number of atmospheric neutrinos

Background

Atm νµ

??~20%~10-20%~10%

~40,000 / y~2,000~630 /y~1800 /y

IC-80IC-22IC-9AMANDA-II

Notes : A part from AMANDA-II and IC-9 the numbers reported are approximate.
            Year is 365 day livetime
            Numbers for IC22 and IC80 are preliminary estimations based on IC9 selection

• unprecedented statistics of atmospheric neutrinos able to probe
  hadronic interaction models

• huge statistics of cosmic muons to probe dependency on cosmic
  ray composition and on hadronic interaction model

• wide energy range to constrain uncertainties on normalization
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Muon energy loss
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Polar ice optical properties
Measurements:

▶in-situ light sources
▶atmospheric muons

scattering

bubbles

dust

absorption

dust

ice

J. Geophys. Res. 111 (2006) D13203

Average optical ice parameters:
λabs    ~ 110 m @ 400 nm
λsca    ~   20 m @ 400 nm
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Accessing low energy events
• IceCube and AMANDA-II denser core to measure events down to ~ 30 GeV

• Topological trigger in IceCube based on hit sensor topology
• starting/stopping tracks
• contained tracks

• IceCube denser along vertical strings (17 m vs 125 m string distance)
• at least 5 hit consecutive sensors in a string : Eν >30 GeV
• measure neutrino track length
• Albuquerque and Smoot, Phys Rev D64, 053008

• 
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Accessing low energy events (cont.)



27

Neutrino oscillations

Albuquerque and Smoot, Phys Rev D64, 053008

• angular distribution of contained
  events

• energy threshold  ~ 20 GeV
• energy resolution < 30 GeV

• effect reduced for Δm2 < 3·10-3 eV2

• L/E distribution
• maximal for up-going tracks 
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High energy atmospheric neutrinos

Neutrinos from pions and Kaons

νµ

νµ
from π decay
from K decay

QGSJET01

QGSJET-II

SIBYLL

PRELIMINARY

R. Birdsall, PD

SIBYLL produces more K+

than other interaction models,
which contributes to µ+ and νµ
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High energy atmospheric muons

Muons from pions and Kaons

from π decay
from K decay

QGSJET01

QGSJET-II

SIBYLL

PRELIMINARY

R. Birdsall, PD

µ+

µ-
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Interaction Models : π/K

D. Heck
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Interaction Models : π/K

P. Berghaus

Full shower development with CORSIKA

Hörandel Polygonato Cosmic Ray Spectrum

π production in
fair agreement

SIBYLL produces K+

in excess
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π and K production @ first interaction

R. Ganugapati, J. Kelley, T. Montaruli
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Uncertainties on atmospheric neutrino flux

G.D. Barr et al., astro-ph/0611266 

J. Ahrens


