DCBA experiment for searching for Neutrinoless Double Beta Decay

Nobuhiro Ishihara (KEK, Tsukuba)

- Results of DCBA-T2
- Status of DCBA-T3
- Prospects of MTD (Magnetic Tracking Detector)
- Summary

TAUP2007 Sendai, September 11- 15, 2007

N. Ishihara, TAUP2007, Sendai

DCBA: Drift Chamber Beta-ray Analyzer

DCBA collaboration

N. Ishihara, Y. Kato, T. Inagaki, G. Iwai, T. Ohama, S. Takeda, Y. Yamada, T. Haruyama, Y. Makida, M. Kawai High Energy Accelerator Research Organization (KEK), Tsukuba, Japan S. Kitamura, T. Ishikawa, T. Sakuma, T. Sumiyoshi Tokyo Metropolitan University, Tokyo, Japan Y. Teramoto, Osaka City University, Osaka, Japan I. Nakano, Okayama University, Okayama, Japan Y. Sakamoto, Tohoku Gakuin University, Sendai, Japan Y. Nagasaka, Hiroshima Institute of Technology, Hiroshima, Japan N. Tamura, Niigata University, Niigata, Japan K. Tanaka, SSI, Saitama, Japan R. Ito, ZTJ, Tokyo, Japan

Principle of **DCBA**

DCBA-T2

• Drift chamber	Multi-track capability				
Anode wire pitch 6 mm					
Pickup wire pitch 6 mm					
Sensitive vol.	$18(X) \times 26(Y) \times 26(Z) \text{ cm}^3$				
Signal readout	Flash ADC				
X-position	Drift velocity × Drift time				
	$(\sigma_{\rm X} \sim 0.5 \text{ mm})$				
Y-position	Anode wire position				
	$(\sigma_{\rm Y} \sim 0.5 \text{ mm})$				
Z-position	Pickup wire position				
	$(\sigma_Z \sim 0.5 \text{ mm})$				
• Magnet	Solenoid coil +				
C	Flux return yoke				
Magnetic field	0.8 kG (Max.)				
Uniform Vol.	40 dia. x 70 cm ³ ($\delta B/B_0 < 1\%$)				

Scintillation counters

2007/9/13

• Veto-counters

Energy measurement of an I. C. electron from ²⁰⁷Bi

Energy resolution of DCBA-T2

N. Ishihara, TAUP2007, Sendai

2007/9/13

N. Ishihara, TAUP2007, Sendai

Other BGD events (1)

Other BGD events (2)

2007/9/13

Main parameters of DCBA-T3

• Drift chamber Source	Multi-track capability Nd ₂ O ₃ (40 mg/cm ² ×13,760 cm2 = 550 g) (150 Nd = 0.18 mol)
Sensitive vol.	$4(X) \times 44(Y) \times 44(Z)$ cm ³ /chamber: 8 chamber $4(X) \times 20(Y) \times 44(Z)$ cm ³ /chamber: 4 chamber
Anode wire pitch	3 mm
Pickup wire pitch	3 mm
Signal readout	Flash ADC
X-position	Drift velocity × Drift time ($\sigma_x \approx 0.5 \text{ mm}$)
Y-position	Anode wire position ($\sigma_{\rm v} \approx 0.2$ mm)
Z-position	Pickup wire position ($\sigma_Z \approx 0.2 \text{ mm}$)
• Magnet Magnetic field Uniform Vol.	Superconducting Solenoid + Flux return yoke 2.0 kG (Max.) 80 dia. x 80 cm ³ ($\delta B/B_0 < 1\%$)
• Veto-counters	Scintillation counters

DCBA-T3 SC Magnet

Geant4 studies of energy resolution

DCBA-T3

Expected energy resolution $\frac{\text{FWHM}(E_{sum})}{Q_{150\text{Nd}}(=3.37\text{MeV})} \approx 3.4\%$ Magnetic field = 1.8 kGWire pitch = 3 mmMax. drift length = 40 mmGas : He (85%) + CO₂ (15%)

Magnetic Tracking Detector (MTD: temporary name)

Source plate: 80 m²/module Thickness: 15 (40) mg/cm² Source weight: 12 (32) kg/module $< m_v >_{sns} \approx 0.8(0.5) \,\text{eV}$ for normalNd/mod.y1 $< m_v >_{sns} \approx 0.2(0.1) \,\text{eV}$ for 60% ¹⁵⁰Nd/mod.yr N. Ishihara, TAUP2007, Sendai

Half-life and Effective Mass Sensitivities of DCBA for ¹⁵⁰Nd, ¹⁰⁰Mo and ⁸²Se (Tentative)

	Natural Nd	¹⁵⁰ Nd	¹⁰⁰ Mo	⁸² Se
	(5.6% ¹⁵⁰ Nd)	(80% enr.)	(90% enr.)	(90% enr.)
DCBA Amount (mol) (600 kg: 50 modules)	190	2700	5400	6600
$T_{1/2}^{0v} \text{ sns (yr)}$	9×10^{24}	1×10^{26}	$2 \times 10^{26} \\ 0.07$	3×10^{26}
$< m_v > \text{sns (eV)}$	0.06	0.02		0.04

Nucl. Matrix Element: A. Staudt et al. Europhys. Lett. 13 (1) (1990) 31

N. Ishihara, TAUP2007, Sendai

Summary

◆ DCBA (Drift Chamber Beta-ray Analyzer) is an R&D project for constructing Future MTD (Magnetic Tracking Detector).

◆ DCBA-T2 have shown that the energy resolution is about 150 keV (FWHM) at 980 keV, and background events are clearly identified.

 ♦ DCBA-T3 is scheduled to be constructed in 2007 and operated in 2008. Target energy resolution is about 80 keV (FWHM) at 980 keV.

 New international collaboration using MTD will be able to investigate the effective neutrino mass down to around 30 meV.