

Latest Results from The MINOS Experiment

Andy Blake, Cambridge University (for the MINOS collaboration)

International Conference on Topics in Astroparticle and Underground Physics. Sendai, Japan – September 2007.

- Precision studies of v_{μ} disappearance.
 - Measure Δm_{23}^2 and $\sin^2 2\theta_{23}$ **PRL 97, 191801 (2006).**
 - High statistics constraints on alternative disappearance models.
 (e.g. neutrino decay, neutrino decoherence, sterile neutrinos ...).

• Search for sub-dominant v_e appearance.

– First observation or improved limit for small mixing angle θ_{13} .

Atmospheric neutrino oscillations.

- Contained vertex v_{μ} CC interactions. **PRD 73, 072002 (2006).**
- Neutrino-induced upward-going muons. PRD 75, 092003 (2007).

Cosmic ray physics.

– Muon charge ratio at TeV energies. arXiv/0705.3815 [hep-ex].

This Talk:

- New preliminary results on v_{μ} disappearance based on exposure of
 - 2.5 x 10²⁰ protons on the NuMI target. arXiv/0708.1495 [hep-ex].
- New preliminary atmospheric muon and electron neutrino results.

THE MINOS COLLABORATION

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • College de France Fermilab • Harvard • IIT • Indiana • Minnesota Duluth • Minnesota Twin Cities • Oxford • Pittsburgh Rutherford • Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M • Texas Austin Tufts • UCL • William & Mary • Wisconsin

The MINOS Experiment

- Accelerator beam of muon neutrinos produced by NuMI facility at Fermilab.
- Near Detector at Fermilab to measure spectrum and composition of beam.
- Far Detector at Soudan mine to study neutrino disappearance in beam.

735 km

Fermi Laboratory, Chicago

Soudan Mine, Minnesota

The NuMI Beam

Neutrinos from the Main Injector (NuMI)

- 120 GeV protons from Main Injector directed onto 50g graphite target.
- 10µs spills with 2.4s cycle time.
- 2.5 x 10¹³ protons per pulse.
- Typical beam power ~175 kW.
- Relative target position is moveable, making beam spectrum configurable.
- Majority of running in LE configuration.

Andy Blake, Cambridge University

The MINOS Detectors

Near Detector

1 kT mass 1 km from target 282 steel planes 153 scintillator planes 100m underground

Functionally Identical Detectors

steel and scintillator sampling calorimeters.

Magnetized steel (B ~1.3T).

GPS time-stamping for synchronization.

Far Detector

5.4 kT mass 735 km from target 486 steel planes 484 scintillator planes 700m underground

Andy Blake, Cambridge University

Look for
$$v_{\mu}$$
 deficit: $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{E}\right)$

2+ Years of NuMI Running

Improvements over 2006 analysis:

- Better reconstruction.
- Improved event selection.
- Improved shower modelling.
- New intra-nuclear modelling.
- CC/NC interactions separated using multivariate 2D likelihood procedure combining information from:
 - Track observables.
 - Event length.
 - Event kinematics.

Improvement in selection ~1% more CC signal. ~50% less NC background.

Data and Monte Carlo agree well.

Andy Blake, Cambridge University

- Parameterize Fluka 2005 hadron production model as $f(x_F, p_T)$.
- Fit to near detector data collected in different beam configurations.
 - incorporate into the fit: horn focusing current, beam misalignments, cross-sections, neutrino energy scale, neutral current background.
- Improved agreement between data and MC in all configurations.

Predicting the Far Spectrum

• Directly use near detector data to extrapolate from near to far detector.

- Use Monte Carlo to correct for energy smearing and detector acceptance.
- Use a beam transfer matrix derived from the beam simulation to relate neutrino interactions in each detector via their parent hadrons.

Systematic Uncertainties

- Systematic uncertainties on oscillation parameters evaluated by fitting fake data sets generated from MC with systematic shifts applied.
- The three largest uncertainties identified from this study are included as nuisance parameters in the oscillation analysis.

Uncertainty	Δm² (10 ⁻³ eV²)	sin² 2θ
Near/far normalization (4%)	0.065	<0.005
Abs. shower energy scale (10%)	0.075	<0.005
NC normalization (50%)	0.010	0.008
All other systematics	0.040	<0.005
Total uncertainty (quad. sum)	0.11	0.008
Statistical uncertainty	0.17	0.080

PRELIMINARY OSCILLATION RESULTS FOR 2.5x10²⁰ POTs DATA.

Data sample	Observed	Expected (no osc.)	Observed / Expected
$ u_{\mu}$ (all E)	563	738 ± 30	0.74 (4.4σ)
ν _μ (<10 GeV)	310	496 ± 20	0.62 (6.2σ)
ν _μ (<5 GeV)	198	350 ± 14	0.57 (6.5σ)

Andy Blake, Cambridge University

Allowed Parameter Space

MINOS Preliminary

Andy Blake, Cambridge University

Atmospheric Neutrinos at MINOS

• MINOS far detector can be used to study atmospheric neutrinos.

- 5.4 kT mass generates high rate of atmospheric neutrino interactions.
- 700m depth provides shielding against cosmic muon background.
- magnetic field enables separation of neutrino and anti-neutrino events.
- Calorimeter detector design enables measurement of total energy.
- Atmospheric neutrino analyses:
 - contained vertex interactions.PRD 73, 072002 (2006).
 - neutrino-induced up-going muons.
 PRD 75, 092003 (2007).
 - Reported here are new preliminary contained vertex muon and electron atmospheric neutrino results.

Contained vertex events classified as follows:

- Fully Contained (FC).
- Down-Going Partially Contained (PCDN).
- Up-Going Partially Contained (PCUP).

Atmospheric Muon Neutrinos

- Updated contained vertex v_{μ} analysis based on exposure of 12.23 kT-Yrs.
- Observe 277 events, with expectation of 354 ± 47 in absence of oscillations.
- Select events with well-measured muon direction based on timing information.

- 105 downward-going, 77 upward-going.

 $R_{up/down}^{data} / R_{up/down}^{MC} = 0.72_{-0.11}^{+0.13} (stat) \pm 0.04 (sys)$

• Select events with well-measured muon charge based on curvature in B-field.

– 112 neutrinos, 55 anti-neutrinos.

 $R_{\overline{\nu}/\nu}^{\text{data}} / R_{\overline{\nu}/\nu}^{\text{MC}} = 0.93^{+0.19}_{-0.15}(\text{stat}) \pm 0.12(\text{sys})$

 Oscillation analysis carried out by binning events according to their Bayesian *L/E* resolution.

Andy Blake, Cambridge University

Andy Blake, Cambridge University

- Preliminary MINOS atmospheric v_e results based on exposure of 6.18 kT-Yrs.
 - Identify $\nu_{\rm e}$ events as contained vertex electromagnetic showers.
 - Observe 89 candidate $\nu_{\rm e}$ events with expectation of 89 \pm 17 events.
 - Observe 113 candidate ν_{μ} events with expectation of 150 \pm 30 events.

 $R_{\mu/e}^{data} / R_{\mu/e}^{MC} = 0.74_{-0.10}^{+0.12} (stat) \pm 0.05 (sys)$

- Use selected v_e event sample to measure atmospheric neutrino flux normalization relative to *Bartol04* flux model.
 - account for oscillations of true v_{μ} events in selected v_{e} event sample.

 $S_{atm} = 1.07 \pm 0.12(stat) \pm 0.08(sys)$

- MINOS has had a successful second year of beam running.
 - 3.6x10²⁰ PoTs have now been accumulated after two years.
- Updated oscillation measurement based on 2.5x10²⁰ PoTs.

$$\left|\Delta m_{32}^2\right| = 2.38^{+0.20}_{-0.16} \times 10^{-3} \text{ eV}^2$$

 $\sin^2 2\theta_{23} = 1.00_{-0.08}$

Other oscillation analyses using beam data are progressing.

 $-v_e$ appearance, anti- v_{μ} disappearance, sterile neutrinos...

- Updated atmospheric muon and electron neutrino results.
 - developing combined analysis of all MINOS atmospheric neutrino data.

See poster session for more information on latest MINOS results

Backup Slides

NuMI Beam Line

Booste

0

Main Injector

22.420

Fermi Laboratory

PMT Dark Box

Scintillator Strips

WLS Fibres

MINOS Calibration

Ē

– PMT gain and linearity.

Cosmic ray muons:

- relative strip calibration.
- intra-detector calibration.

Calibration Error:		
- ND calibration:	3.1%	
- FD calibration:	2.3%	
- ND/FD calibration:	3.8%	

Overall Energy Scale:

- Calibration detector at CERN measured $e/\mu/\pi/p$ response.

Energy Resolution (E in GeV):

- Hadrons: 56%/ $\sqrt{E} \oplus 2\%$
- Electrons: 21%/ $\sqrt{E} \oplus 4$ %/E

Andy Blake, Cambridge University

Reconstruction of a MINOS Event

Reconstruction of a MINOS Event

Event Topologies in MINOS

v_µ CC Event μ-W p n υz ٧Z 3.5m վկակեսես

long µ track & hadronic activity at vertex

 $\frac{\text{NC Event}}{v_{\alpha}}$

υz

short event, often diffuse

v_e CC Event

short, with typical EM shower profile

Andy Blake, Cambridge University

- CC events selected using a likelihood based procedure with six input PDFs that show discrimminating power between true CC and NC interactions:
 - Number of track planes.

 - Track pulse height per plane. Reconstructed y (E_{shw}/E_{y}) .
- Goodness of muon track fit.
 - Number of track only planes.
 Reconstructed muon charge.
- 2D PDFs are used to take account of correlations with event length.
- The discrimminant variable (PID) is defined as follows:

$$P_{CC}(X,Y,Z,...) = P(X|CC) P(Y|CC) P(Z|CC) ... P(CC)$$

 $P_{NC}(X,Y,Z,...) = P(X|NC) P(Y|NC) P(Z|NC) \dots P(NC)$

$$PID = \frac{P_{CC}}{P_{CC} + P_{NC}}$$

Andy Blake, Cambridge University

Good agreement between data and Monte Carlo observed for these variables.

Near Detector Interactions

- High event rate in near detector. – Multiple interactions per spill.
- Events separated based on topology and timing.
 - Timing resolution ~20 ns
 - Spatial resolution ~4 cm
- No significant bias in event rate.

Andy Blake, Cambridge University

Far Detector Interactions

- Beam interactions identifiable with "spill trigger".
 - GPS spill time is sent via internet from near to far detector.
 - Events within $\pm 50 \mu s$ of spill written out by far detector DAQ.

Far Detector Timing

MINOS PRELIMINARY

Far Detector Event Rates

Far Detector Distributions

Far detector data is well described by oscillation best fit

Far Detector Distributions

Andy Blake, Cambridge University

Far Detector Backgrounds

MINOS PRELIMINARY

Comparison with 2006 Result

(PRL 97, 191801)

MINOS Preliminary

Andy Blake, Cambridge University

The MINOS Experiment, slide 37

Comparison with 2006 Result

(PRL 97, 191801)

Andy Blake, Cambridge University

Changes from 2006 Result (PRL 97, 191801)

Comparison of Runs I and IIa

Andy Blake, Cambridge University

\underline{v}_{μ} **Disappearance**

MINOS Sensitivity as a function of Integrated POT

NC Analysis

- Neutral current interactions are unaffected by standard oscillations, so can be used to constrain oscillations into sterile neutrinos.
- Define sterile mixing parameter f_s as the fraction of disappearing muon neutrinos that oscillate into sterile neutrinos.

• Far detector data for this analysis currently blinded – analysis in progress.

<u>v</u>e Appearance

δ (π)

- MINOS can constrain or measure θ_{13} by searching for v_e appearance.
- Challenges are to separate signal and understand background.
 - NC events form dominant background.
 - Much effort has gone into developing techniques for distinguishing between electromagnetic and hadronic showers.
 - Data-driven techniques for background determination also in development.
- MINOS sensitivity will soon be comparable with the current world best limit (CHOOZ).

90% CL Sensitivity to sin²(2013) 2 MINOS $\Delta m_{23}^2 = 2.7 \ 10^{-3} \ eV^2$ 1.8 $sin^{2}(2\theta_{23}) = 1$ 1.6 4x10²⁰ pot To be superseded soon 1.4 CHOOZ 1.2 90% CL Excluded 1 0.8 0.6 0.4 $\Delta m^2 < 0$ 0.2 0 -2 -1 10 10

sin²(2013)