The OPERA experiment

Oscillation Project with Emulsion tRacking Apparatus

Direct search for the $v_{\mu} \rightarrow v_{\tau}$ oscillation by looking at the appearance of v_{τ} in a pure v_{μ} beam

- CNGS program
- OPERA detector and experimental strategy
- Physics potential
- First operations of CNGS and OPERA

Collaboration:

Belgium (IIHE(ULB-VUB) Brussels), Bulgaria (Sofia University), China (IHEP Beijing Shandong University), Croatia (Zagreb University), France (LAPP Annecy, IPNL Lyon, LAL Orsay, IPHC Strasbourg), Germany (Berlin Humboldt University, Hagen, Hamburg University, Münster University, Rostock University), Israel (Technion Haifa), Italy (Bari, Bologna, LNF Frascati, L'Aquila, LNGS, Naples, Padova, Rome, Salerno), Japan (Aichi, Toho, Kobe, Nagoya, Utsunomiya), Russia (INR Moscow, ITEP Moscow, JINR Dubna, Obninsk), Switzerland (Bern, Neuchâtel, Zürich), Tunisia (Tunis University), Turkey (METU Ankara)

Cécile Jollet, IN2P3-ULP Strasbourg on behalf of the OPERA collaboration TAUP07 Conference - Sendai - September 11-15, 2007

The Cern Neutrino to Gran Sasso (CNGS) program

Motivated by the atmospheric neutrino disappearance

Beam mean features:

L=730 km ; <E $_{\nu\mu}$ >=17 GeV

 $(v_e + v_e)/v_\mu = 0.87\%$; v_τ prompt negligible

In shared mode $\rightarrow 4.5 \times 10^{19}$ pot/year $\Rightarrow 2900 \nu_{\mu} CC/kton/year$ expected at $\Rightarrow 13 \nu_{\tau} CC/kton/year$ Gran Sasso CERN v_{μ} beam optimized to study the v_{τ} appearance by τ detection in the parameters region: $\Delta m^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$ and $\sin^2 2\theta \approx 1.0$ τ production threshold=3.5 GeV

The CNGS beam

CNGS beam fully completed and operational since August 2006

The OPERA experimental design

The OPERA detector

The OPERA Target Tracker

The OPERA Muon Spectrometer

- Performant μ tagging (improvement of $\tau \rightarrow \mu$ efficiency and tag of $\nu_{\mu}CC$ events)
- μ charge measurement to reduce background induced by charm decay:

 \Rightarrow Inner tracker (RPC in magnet) and precision tracker (drift tube, 8 m length)

- $\epsilon_{\text{miss charge}} \sim (0.1 0.3)\%$ $\Delta p/p < 20\%$ for p < 50 GeV
- μ id > 95% (with target tracker)

The OPERA detector

Veto

BMS: Brick Manipulating System Spectrometer: RPC, Drift Tubes, magnet

Target Tracker

The OPERA detector

Bricks elements and production

- Lead (PbCa colaminated) mass production in JL Goslar firm (Germany)
- Emulsion Refreshing Facility in Tono Mine (Japan)
- Brick mechanical packaging demanded for custom metal and plastic components

154 750 bricks to produce \Rightarrow automatically using a Brick Assembling Machine (BAM)

Hall B, Gran Sasso

I packaging station

<u>Goal</u>: construct 936 bricks/day Detector fully filled by April 2008 At now: ~ 45000 bricks inside the detector

Events detection sequence

I- Brick tagging by Target Tracker:

2- Brick removed with the BMS (Brick Manipulating System)

- 3- Brick exposed to cosmic rays for sheets alignment
- 4- Brick disassembled and emulsions developed

Automatic emulsions scanning:

- ~30 bricks will be daily extracted from the target
- Distributed to several labs in Europe and Japan
- 2 high-speed automatic scanning systems:
 - The European Scanning System (commercial products, software algorithms)
 - The S-UTS (Japan) (Dedicated hardware, hard coded algorithms)
- Scanning speed: 20 cm²/h

Off-line emulsions scanning

full mixing, 5 years run @ 4.5x10¹⁹ pot / year

Efficiency:	ε _{trigger} x ε _{brick} x ε _{geom} x ε _{primary_vertex} 99% x 80% x 94% x 90%
	fringe effect for scanning

τ decay channels	ε (%)	BR(%)	Signal		
			∆m ² =2.5x10 ⁻³ eV ²	∆m ² =3.0x10 ⁻³ eV ²	Background
τ → μ	17.5	17.7	2.9	4.2	0.17
τ → e	20.8	17.8	3.5	5.0	0.17
τ → h	5.8	50	3.1	4.4	0.24
τ → 3h	6.3	15	0.9	1.3	0.17
ALL	ε×BR	=10.6%	10.4	15.0	0.76

Main background sources:

- charm production and decays
- hadron re-interactions in lead
- large-angle muon scattering in lead

Ist CNGS run: August 2006

- 121 hours of real beam operation
- Used for electronic detectors, DAQ, GPS commissioning and tests of CNGS-OPERA information exchange
- No bricks in the detector
- 70% of nominal intensity \rightarrow 1.7×10¹³ pot/extraction

CNGS beam:

Time selection of beam events:

 \Rightarrow The events time distribution is peaked around the 2 extractions peak times within negligible cosmic-ray background

OPERA beam events

- 319 beam events collected:
 - 3/4 external events (interaction in the rock)
 - I/4 internal events (interaction in the detector)

v_{μ} CC in the magnet

Events direction

Physics commissioning runs

- CNGS run in October 2006:
 - 3 double fast extraction distant by 6 seconds per 36 seconds SPS cycle
 - 0.6×10¹⁷ pot delivered and 30 events stored
 - Run stopped due to a water leak in the reflector $(2^{nd} \text{ horn}) \rightarrow \text{CNGS}$ "reparation"
- Cosmic runs for commissioning of electronic detectors, target-tracker to brick connection
- Beam runs (CERN, Desy...) for emulsion development commissioning, scanning strategy, and tune the vertex finding methods
- CNGS run in 2007 (beginning 18 September):
 - 3 weeks of CNGS commissioning
 - 3 additional weeks of physics run
 - 70% of nominal intensity: 1.7×10¹³ pot/extraction
 - 505 tons (~59000 bricks) at the start of the run
 - 616 tons (~72000 bricks) at the end of the run

- The OPERA experiment has completed almost entirely the construction of all electronic detectors and faces the last effort of brick production and insertion.
- The electronic detectors took data almost continuously and with the expected tracking performances.
- The electronic detectors-brick connection has been tested with success.
- First, low intensity, CNGS run operated smoothly for both beam and detector with good quality and stability.
- The detector is ready for the next phase: observing neutrino inside bricks.

Backup Slides

Automatic emulsions scanning

mechanics + asynchronous DAQ software

Hard-coded algorithms

OPERA goal: v_{τ} **appearance signal detection**

The challenge is to identify v_{τ} interactions from v_{μ} interactions

Sensitivity to Θ_{I3}

full mixing, 5 years run @ 4.5x10 ¹⁹ pot / year						
Θ ₁₃ (deg)	Signal v _µ →v _e	Background				
		τ→e	$\nu_{\mu}CC$	$\nu_{\mu}NC$	$v_e^{}CC^{}$ beam	
9	9.3	4.5	1.0	5.2	18	
7	5.8	4.5	1.0	5.2	18	
5	3.0	4.5	1.0	5.2	18	

Limits at 90% CL for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ full mixing

	$sin^2 2\Theta_{13}$	Θ_{13}
CHOOZ	<0.14	۱I°
OPERA	<0.06	7.1 °

