

The Telescope Array

- Status and prospects -

Hisao Tokuno ICRR, Tokyo U.

The Telescope array collaboration

2007/Sep/14

Difference of Observed Energy spectrum

Not only poor statistics, Systematic differences between each experiment can be seen

possibilities

Difference of detection method

Difference of detection components with MC dependence

(Electro magnetic components, Mu, air fluorescence)

• Unstable UHECR source

Difference of UHECR Source distribution

(Auger: South hemisphere, Others: North hemisphere) etc \cdots

The Telescope Array tackling the problems

FD part

1st, 2nd station of FD

Newly telescopes

12 telescopes/station

1st station: completed

2nd station: 6 cameras completed, 6 cameras waiting for HVPS installation.

3rd station of FD

Hires-I has been moved.

Now calibration and test operation is running.

3rd station Middle Drum

14Mirrors/cameras PMT FOV ~1° Mirror 5.2m²

FD Stereo event example

Stereo operation have been started June2007

Long Ridge (2nd station)

20

15 micro aecond

Atmospheric Transparency monitoring

Fluorescence light are attenuated by Rayleigh & Mie scattering

Extinction Coefficient is measured by Backscatt. Lidar @ BRM

Absolute Energy Calibration on site by 40 MeV electron linac beam

40 MeV electrons 100m away from telescope $10^9 ppp = 4 \times 10^{16} eV$

Now being assembled at KEK B-factory.

SD: Event example

TA (Phase-I) prospect

UHECR Energy spectrum

- To confirm UHECR Energy spectrum on the North hemisphere (to understand the difference of spectrum between AGASA and HiRes)
 - To compare the energy and aperture estimation power of FD-Mono, HiRes-I, FD-stereo, SD, and Hybrid.

SD AGASA type (plastic scintillators measure Elemag. components mainly) FD Hires type (Elemag. components) 3rd FD Hires-I

FD End to End calibration (electron beam)

Anisotropy

- To confirm the Anisotropy of UHECR on the North hemisphere.

AGASA: cluster (doublet, triplet) HiRes: BL Lac correlation

Composition

Composition at the low energy region

Galactic/Extragalactic Transition appear? FD + Low energy Extension (TALE) Highest Energy of Galactic CR?

Conclusion

FD

FD stereo (with 1^{st} and 2^{nd} station) obs. has been started by June 07. 2^{nd} , 3^{rd} station will be set up soon.

FD full operation will be started this autumn.

SD

SD installed 485 SDs (95% of 512SDs) Feb 07

The rest will be installed on Oct.

SD full operation will be started this autumn.

This autumn, full hybrid operation will be started.

To confirm UHECR Energy spectrum and anisotropy on the North hemisphere

The Telescope Array

- Status and prospects -

Hisao Tokuno ICRR, Tokyo U.

The Telescope array collaboration

2007/Sep/14

Difference of Observed Energy spectrum

Not only poor statistics, Systematic differences between each experiment can be seen

possibilities

Difference of detection method

Difference of detection components with MC dependence

(Electro magnetic components, Mu, air fluorescence)

• Unstable UHECR source

Difference of UHECR Source distribution

(Auger: South hemisphere, Others: North hemisphere) etc \cdots

The Telescope Array tackling the problems

FD part

1st, 2nd station of FD

Newly telescopes

12 telescopes/station

1st station: completed

2nd station: 6 cameras completed, 6 cameras waiting for HVPS installation.

3rd station of FD

Hires-I has been moved.

Now calibration and test operation is running.

3rd station Middle Drum

14Mirrors/cameras PMT FOV ~1° Mirror 5.2m²

FD Stereo event example

Stereo operation have been started June2007

Long Ridge (2nd station)

10

15 micro second

Atmospheric Transparency monitoring

Fluorescence light are attenuated by Rayleigh & Mie scattering

Extinction Coefficient is measured by Backscatt. Lidar @ BRM

Absolute Energy Calibration on site by 40 MeV electron linac beam

Now being assembled at KEK B-factory.

SD: Event example

TA (Phase-I) prospect

UHECR Energy spectrum

- To confirm UHECR Energy spectrum on the North hemisphere (to understand the difference of spectrum between AGASA and HiRes)
 - To compare the energy and aperture estimation power of FD-Mono, HiRes-I, FD-stereo, SD, and Hybrid.

SD AGASA type (plastic scintillators measure Elemag. components mainly) FD Hires type (Elemag. components) 3rd FD Hires-I

FD End to End calibration (electron beam)

Anisotropy

- To confirm the Anisotropy of UHECR on the North hemisphere.

AGASA: cluster (doublet, triplet) HiRes: BL Lac correlation

Composition

Composition at the low energy region

Galactic/Extragalactic Transition appear? FD + Low energy Extension (TALE) Highest Energy of Galactic CR?

Conclusion

FD

FD stereo (with 1st and 2nd station) obs. has been started by June 07. 2nd, 3rd station will be set up soon.

FD full operation will be started this autumn.

SD

SD installed 485 SDs (95% of 512SDs) Feb 07

The rest will be installed on Oct.

SD full operation will be started this autumn.

This autumn, full hybrid operation will be started.

To confirm UHECR Energy spectrum and anisotropy on the North hemisphere