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The Cold War – and civil nuclear reactors -  have both generated
 large quantities of Plutonium and HEU 

Estimates from http://www.isis-online.org 490 tons separated plutonium worldwide: 
•  340 tons civil  
•  150 tons military 

In units of Hiroshima strength fission weapons … 
From HEU    ~75,000 
From separated Plutonium   ~ 60,000 
From all plutonium   ~ 230,000   
Total possible   ~300,000 

Category Plutonium 
(tonnes) 

HEU 
(tonnes) 

Civil 1675 175 

Military 155 1725 

Total 1830 1900 
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What is being done to monitor and reduce global
 stockpiles of nuclear materials and weapons ?  

Historically and currently:  
•  Civil nuclear fuel cycle monitoring  
•  Weapons limits/dismantlement 
•  Military nuclear materials control and monitoring  
•  Domestic nuclear security in individual states  

 – ‘ Homeland Security’  
•  National and International ‘Technical Means’ 

Considerable activity in the last two years 
•  Obama 2009 Prague speech – ‘the miracle year’

 according to former US State and Def Secretaries
 Schultz and Perry 

•  First fully declassified US Nuclear Posture Review 
•  ‘New START’ Russia-US treaty 
•  2010 Nuclear Security summit to secure vulnerable

 materials in 4 years (not gonna happen) 



4 
4 

Nuclear security problems that antineutrino detectors might be able to address  

1.  IAEA Safeguards 
—  Current Safeguards Regime 
—  Plutonium Disposition 
—   FMCT 

Demonstrated with simple
 detectors (LLNL, Kurchatov) 

Detectors at this
 scale 
exist now 

 Proposed for physics    
 experiments 

Status Application    Scale    
Near-field            5-1000 m 
Detector Scale    1-100 tons  

Mid-Field            1– 10 km 
Detector Scale   1-10 kiloton 
Reactor Scale    10 MWT 

Far-Field             10– 500 km 
Detector Scale    1 Megaton 
 (n.b. - mass not yield) 
Reactor Scale    10 MWT 

 2. Verification and  
     Cooperative Monitoring 

•  Confirm cessation of
 plutonium production - e.g.
 in North Korea, Iran 

 3. Remote Detection 
•  Observe reactors and

 explosions across borders 
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The International Atomic Energy Agency monitors the nuclear fuel 
cycle in 170 countries 

Weapons production Generic fuel cycle 

IAEA goal – detect diversion of
 fissile material from peaceful
 to military programs

Goal for antineutrinos measurements – 
track fissile inventories in operating reactors 
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IAEA monitors about 220 reactors worldwide  - without ever directly 
measuring core fuel inventories 

(1-1.5 years) (months) (forever) 

1. Check Input and   
 Output 
Declarations 

2. Verify with Item 
Accountancy 

3.Containment and    
Surveillance 

1 ‘Gross Defect’ 
Detection 

2. Cerenkov counters 
3 Item Accountancy 
4. Containment and 

Surveillance 

1 Check Declarations 
2 Verify with Bulk 
    Accountancy 

(months to years) 

Operators Report Fuel Burnup and Power History 
No Direct Pu Inventory Measurement  - ‘Bulk Accountancy’  - is Made Unless and 
Until Fuel is Reprocessed 
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Some common methods of antineutrino detection  
1. Inverse beta decay 
The gold standard for antineutrino detection 
A robust time-coincident signal 
‘good old inverse beta’ - Petr Vogel 
Neutrinos are not a background for this process 

2. Antineutrino-electron scattering  
(~100x smaller cross section than inverse beta decay) 

Neutrinos are a background for this process 

3. Coherent antineutrino-nucleus scattering 
(100-1000x larger cross section than inverse beta decay) 
But - a very weak signal (10s-100s of eV nuclear recoils) 
May be interesting for reactor monitoring out to a few km  

Neutrinos are a background for this process 

Enhanced by 
square of 
neutron number
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Example: the SONGS1 detector at the San Onofre Nuclear Generating 
Station 

25 m 
standoff

•  ~ 1017 antineutrinos/m2/sec 25-m standoff
•  ~ 6,000 events/ton/day    -perfect detector
•  500-1000 events/ton/day - simple detector  

0.64 tons Gd scintillator
Water/polyethylene shield
Plastic muon veto 
2.5 meters on a side,
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The AAP community has been working on safeguards 
optimization since an IAEA Experts Meeting in 2008   

Taiwan, Sandia Natl.
 Lab, U of Chicago,
 LLNL 

Coherent Neutrino Nuclear Scatter Detectors
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ABOVE GROUND DETECTORS 

San Onofre, Kaska, Angra 

Lawrence Livermore National Laboratory 
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ve + p = e+ + n 

Water Cerenkov antineutrino detectors ? LLNL and SuperK have  
shown we can tag neutrons in water   (next, EGADS) 

Use Gd to detect the neutron, as in liquid scintillator  
Gd-doped water (Bernstein, 1999)  
GdCl3 (Beacom & Vagins, 2003) 

n 
νe p 

Σγ ~ 8 MeV 

511 keV 

511 keV e+ 

Gd 

τ ~ 30 µs 

The same prompt e+ signal + n capture on Gd  
as LSCINT  But - 100x less light output

March 2009 : LLNL/SNL demonstration 
with a 250 kg Gd-doped water detector

Inter-event time spectrum
With τ  28 µs 

May 2009 - study of neutron tagging  
with a cell lowered into SuperK  

Neutron energy spectrum  
black = neutron source 
blue = background 



18 

Gd doped water detector deployment in the US 



•  Central detector : ~ 2.00m x 1.60m x 1.40m
•  Target volume: 1.36m x 0.98m x 0.90m  ~1 ton  
•  Water + 0.1% Gd viewed by 40 8” PMTʼs 
•  External Shield: borated polyethylene;
•  Muon veto: extruded plastic scintillator strips;
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Mediumand long  term prospects for demonstration of
 large scale Gd-doped water detectors  

Lawrence Livermore National Laboratory 

Hyper-K
LBNE@
DUSEL

200 ton (6.5 m X 6.5 m)
water tank (SUS304)

Selective Water+Gd
 Filtration System

Transparency
Measurement

[graphic by
A. Kibayashi]

Medium-term – the 200 ton  EGADS experiment at the Kamioka mine 

Long term Japanese and American Megaton array programs – 10-20 years
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Since this is Applied Antineutrino Physics, technology
 development should not be our only focus  

  Better understanding of IAEA
 needs 
•  Find out how are safeguards done

 at most PWRs and BWRs 

•  How can antineutrino detection
 complement the current reactor
 safeguards regime ?  

•  Study of diversion scenarios (see
 Bernstein talk later today) 

•  Formal interactions with the IAEA
 through Member State Support
 Programs  

Lawrence Livermore National Laboratory 

Result of 2008 Experts Meeting at IAEA HQ: 
Interest in application for: 
• Shipper-receiver differences, 
•  Bulk Process/ Online Refuel Reactor
 Verification 
• Research reactor power 
• Safeguards by Design, Integrated
 Safeguards 
• Aboveground Detection 
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Summary and conclusions 
  Safeguards and physics experiments have demonstrated practical unattended and

 nonintrusive monitoring of reactors with cubic meter scale detectors -  e.g. SONGS,
 Rovno expts.  

  Key measurements of safeguards interest are: 
1.  Operational status in hours 
2.  Relative thermal power in weeks 
3.  Burnup/fissile content constraints in weeks to months 

  AAP community must continue to optimize among cost complexity and sensivity 
•  US Brazil, Canadian, French Japanese, Taiwanese and Russian efforts are

 underway – see their talks  
  I did not mention important topics  

•  Reactor simulations to improve connection between fissile content and
 antineutrino rate 

•  Neutrino Directionailty  (see John Learned talk) 
•  Argon and Ge coherent scatter (see Reyna and Wong talks for Ge)  

  Long Range monitoring – Megaton scale devices, water only, not forbidden by
 physics, significant advances in background rejection required Lawrence Livermore National Laboratory 


