### Nucifer Project: Full simulation scheme From reactor to detector response

#### Jonathan Gaffiot on behalf of the Nucifer collaboration

CEA/DSM/Irfu: <u>SPhN</u>, SPP, SEDI, SIS, SENAC CEA/DAM/DIF/DPTA/SPN CNRS/IN2P3: Subatech

August 3rd, 2010



< □ > < <sup>[]</sup> >

(★ 글 ▶ | ★ 글 ▶

#### From reactor to detector response



#### $\Rightarrow$ cf. T. Lasserre and R. Granelli presentations

・ロト ・個ト ・ヨト ・ヨト

#### Reactor simulation

Neutrino spectra simulation Detector simulation Expected sensitivity and conclusions MCNP Utility for Reactor Evolution A 'N4' french PWR simulation: Inputs A 'N4' french PWR simulation: Outputs Validation and non proliferation studies

# Outlook

#### Reactor simulation

- MCNP Utility for Reactor Evolution
- A 'N4' french PWR simulation: Inputs
- A 'N4' french PWR simulation: Outputs
- Validation and non proliferation studies

#### 2 Neutrino spectra simulation

Detector simulation

Expected sensitivity and conclusions

<ロト <回ト < 回ト < 回ト

MCNP Utility for Reactor Evolution A 'N4' french PWR simulation: Inputs A 'N4' french PWR simulation: Outputs Validation and non proliferation studies

# MCNP Utility for Reactor Evolution

#### Principle

- Monte Carlo: given static geometry and compositions, simulates neutron flux
- Evolution code: given a static neutron flux, simulates composition evolution
- MURE iterates these 2 simulations to get a depletion code



#### MURE: a recent open source library for reactor simulation [1]

- $\bullet$  C++ code coupled with MCNP for Monte Carlo simulation
- Developed and supported by CNRS/IN2P3: IPNO, LPSC and Subatech
- Available @ NEA data bank since 2009 (http://www.nea.fr/abs/html/nea-1845.html)
- Adapted to non proliferation needs: C++ interface for inputs description, graphical interface based on ROOT for outputs analysis, coupling with fission products  $\beta$  decay database, off equilibrium effect evaluation...

MCNP Utility for Reactor Evolution **A 'N4' french PWR simulation: Inputs** A 'N4' french PWR simulation: Outputs Validation and non proliferation studies

# A 'N4' french PWR simulation: Inputs

- $\bullet$  Simulation of Double Chooz reactors: french PWR type 'N4', 4.27  ${\rm GW}_{\rm th}$
- Geometry, initial materials, nuclear databases, power history and time steps



Jonathan Gaffiot on behalf of the Nucifer collaboration

MCNP Utility for Reactor Evolution A 'N4' french PWR simulation: Inputs A 'N4' french PWR simulation: Outputs Validation and non proliferation studies

### A 'N4' french PWR simulation: Outputs

#### Fuel inventory, reaction rates, neutron flux, k<sub>eff</sub>...at each time step



э

MCNP Utility for Reactor Evolution A 'N4' french PWR simulation: Inputs A 'N4' french PWR simulation: Outputs Validation and non proliferation studies

## Validation and non proliferation studies

#### Validation



NEA benchmark: NEA benchmark: 4 Westinghouse assemblies Quarter core Westinghouse (N. Capellan PhD thesis)

- Independent NEA benchmarks and sentivity studies [1]
- Comparison with deterministic codes APOLLO2 and DRAGON

#### Non proliferation scenarii studies [2, 3]



The difficulty: convert electron spectra to neutrino spectra The microscopical approach BESTIOLE: a new code to simulate neutrino spectra BESTIOLE's results

<ロト <回ト < 回ト < 回ト

### Outlook

#### Reactor simulation

#### 2 Neutrino spectra simulation

- The difficulty: convert electron spectra to neutrino spectra
- The microscopical approach
- BESTIOLE: a new code to simulate neutrino spectra
- BESTIOLE's results

#### Detector simulation

Expected sensitivity and conclusions

The difficulty: convert electron spectra to neutrino spectra The microscopical approach BESTIOLE: a new code to simulate neutrino spectra BESTIOLE's results

(日) (同) (三) (三)

### The difficulty: convert electron spectra to neutrino spectra

#### $\beta$ decay: measurable electron energy, need to deduce neutrino energy

- Single  $\beta$  branch: direct relation between neutrino and electron energy
- Spectrum of a nucleus: superposition of many  $\beta$  branches
- Spectrum of a reactor: superposition of hundreds of fission products, i.e. thousands of  $\beta$  branches, and still unknown nuclei and branches



The difficulty: convert electron spectra to neutrino spectra The microscopical approach BESTIOLE: a new code to simulate neutrino spectra BESTIOLE's results

### Historical approach for spectrum conversion

- e<sup>-</sup>: accurate measurement of total spectra for each isotopes of interest
- Fit of these spectra with some tens of effective branches
- $\bar{\nu}$ : converted virtual spectra from these effective branches
- Reference for all neutrino experiment: ILL e<sup>-</sup> measurement @ 3%(1980s), and spectra conversion, see [4, 5, 6]



The difficulty: convert electron spectra to neutrino spectra **The microscopical approach** BESTIOLE: a new code to simulate neutrino spectra BESTIOLE's results

< □ > < <sup>[]</sup> >

A B A A B A

### The microscopical approach



The difficulty: convert electron spectra to neutrino spectra The microscopical approach BESTIOLE: a new code to simulate neutrino spectra BESTIOLE's results

### BESTIOLE: a new code to simulate neutrino spectra



#### BESTIOLE: a new C++ code (Th. A. Mueller Ph.D. thesis)

- Inputs: standard nuclear databases (ENSDF format) and fission rates
- Simulate neutrino spectra for each fission product and each fissile isotopes
- Intrinsic error propagation with calculation of covariance matrix

The difficulty: convert electron spectra to neutrino spectra The microscopical approach BESTIOLE: a new code to simulate neutrino spectra BESTIOLE's results

## **BESTIOLE's** results



GEANT4 simulation of the detector Calibration: simulation and detector Fighting correlated backgrounds The results of the experiment

### Outlook

#### Reactor simulation

Neutrino spectra simulation

#### Oetector simulation

- GEANT4 simulation of the detector
- Calibration: simulation and detector
- Fighting correlated backgrounds
- The results of the experiment

Expected sensitivity and conclusions

2

<ロト <回ト < 回ト < 回ト

GEANT4 simulation of the detector Calibration: simulation and detector Fighting correlated backgrounds The results of the experiment

# GEANT4 simulation of the detector



- Simulation of scintillation with dedicated model and fine liquid properties
- Multiple measurements of optical properties of detector components
- Intrinsic digitization of collected photons on simulated photomultipliers
- Output: ROOT files with the same format than experimental data
- Benefits from Double Chooz developments

GEANT4 simulation of the detector Calibration: simulation and detector Fighting correlated backgrounds The results of the experiment

### Calibration: simulation and detector



GEANT4 simulation of the detector Calibration: simulation and detector Fighting correlated backgrounds The results of the experiment

# Fighting correlated backgrounds

#### Pulse Shape Discrimination

- Due to mass difference,  $\alpha$ , p and e<sup>-</sup> have different ionising density
- $\bullet\,$  Light emission is then a bit quicker with  $e^-$  than ion
- Pulse Shape Discrimination can be used to discriminate particles



#### The experiment: introduction of <sup>222</sup>Rn in Nucifer

- $\bullet$  Among  $^{222}\mathrm{Rn}$  daughters,  $^{214}\mathrm{Bi}$  decays  $\beta^-$  on  $^{214}\mathrm{Po}$
- $^{214}\mathrm{Po}$  is  $\alpha$  emitter with half-life 164  $\mu\mathrm{s}$
- Time correlation + 2 different particles: Bi/Po decays mimic a  $ar{
  u}$  signal

GEANT4 simulation of the detector Calibration: simulation and detector Fighting correlated backgrounds The results of the experiment

### The results of the experiment

#### Comparison simulation/experiment



#### A clear indication of Pulse Shape Discrimination for $\alpha$





Expected sensitivity and count rate Conclusions and perspectives

### Outlook

#### Reactor simulation

- Neutrino spectra simulatior
- 3 Detector simulation
- Expected sensitivity and conclusions
  - Expected sensitivity and count rate
  - Conclusions and perspectives

2

<ロ> (日) (日) (日) (日) (日)

Expected sensitivity and count rate Conclusions and perspectives

## Expected sensitivity and count rate

- $\bullet$  At power plant: 25 m from reactor core of constant power 3.3  ${\rm GW}_{\rm th}$
- Detector: 0.8 m<sup>3</sup> of liquid with 50% efficiency
- A point with 1% statistical error each 3 days
- $\bullet\,$  Sensitivity to  $\sim$  55 kg of plutonium



(日) (同) (三) (三)

< □ > < <sup>[]</sup> >

A B M A B M

### Conclusions and perspectives

#### A full simulation scheme from reactor to detector

- Inputs: Standard databases, geometrical properties and history of thermal power
- Outputs: Direct comparison with experimental data
- Non proliferation scenario studies with Nucifer on power and research reactors

#### Perspectives

- Comparison of Osiris  $\bar{\nu}$  spectra simulation with data
- Fine tuning of GEANT4 simulation on final detector
- Accurate non proliferation studies with final Nucifer performances

# Back-up slides

æ

イロン イヨン イヨン イヨン

### References

- O. Méplan *et al.*, MCNP Utility for Reactor Evolution Description of the methods, first applications and results, *Proc. ENC*, 2005
- M. Fallot *et al.* "Nuclear reactor simulations for unveiling diversion scenarios: capabilities of the antineutrino probe," *Proc. GLOBAL*, 2009
- F. Yermia et al. "The Nucifer experiment: antineutrino detection for reactor monitoring," Proc. GLOBAL, 2009
- F. Von Feilitzsch, A. A. Hahn and K. Schreckenbach, "Experimental Beta Spectra From Pu-239 And U-235 Thermal Neutron Fission Products And Their Correlated Anti-Neutrinos Spectra," *Phys. Lett.* B **118** (1982) 162.
  - K. Schreckenbach *et al.*, "Determination Of The Anti-Neutrino Spectrum From U-235 Thermal Neutron Fission Products Up To 9.5-Mev," Phys. Lett. B **160** (1985) 325.
- A. A. Hahn *et al.*, "Anti-Neutrino Spectra From Pu-241 And Pu-239 Thermal Neutron Fission Products," Phys. Lett. B **218** (1989) 365.
  - A. Porta. "Reactor neutrino detection for non proliferation with the Nucifer experiment," *Proc. TAUP*, 2009, and *J. Phys. Conf. Ser.*, 203, 2010

( )

### See also

- MURE: http://lpsc.in2p3.fr/gpr/MURE/html/MURE/MURE.html
- MURE @ NEA: http://www.nea.fr/abs/html/nea-1845.html
- BESTIOLE: Th. A. Mueller Ph.D. thesis
- GEANT4: http://geant4.cern.ch/
- ROOT: http://root.cern.ch/drupal/
- D. Lhuillier et al. The Nucifer experiment: reactor monitoring with antineutrinos for non proliferation purpose. *Proc. GLOBAL*, 2009
- A. Porta et al. Reactor neutrino detection for non proliferation with the NUCIFER experiment. Proc. ANIMMA, 2009 IEEE 10.1109/ANIMMA.2009.5503653
- L. Giot et al. Proc. PHYSOR, 2008
- M. Fallot et al. Proc. Nuclear Data, B., 2007
- B. Guillon et al. Proc. GLOBAL, 2007

(日) (同) (三) (三)

### Conversion procedure

- 9 Fit of the measured spectrum's tail with an effective branch
- Substraction of the branch
- ${\small \textcircled{0}} \quad \text{Iteration} \sim 30 \ \text{times}$



- Individual conversion of each branch with energy conservation
- Sum of all of them to get the total spectrum



### Main corrections brought by MURE



### Noise simulations



27 / 27