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From reactor to detector response

Goal: time prediction of detected neutrino spectra

⇒ cf. T. Lasserre and R. Granelli presentations
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MCNP Utility for Reactor Evolution

Principle

Monte Carlo: given static geometry and compositions, simulates neutron flux

Evolution code: given a static neutron flux, simulates composition evolution

MURE iterates these 2 simulations to get a depletion code

MURE: a recent open source library for reactor simulation [1]

C++ code coupled with MCNP for Monte Carlo simulation

Developed and supported by CNRS/IN2P3: IPNO, LPSC and Subatech

Available @ NEA data bank since 2009 (http://www.nea.fr/abs/html/nea-1845.html)

Adapted to non proliferation needs: C++ interface for inputs description,
graphical interface based on ROOT for outputs analysis, coupling with fission
products β decay database, off equilibrium effect evaluation. . .
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A ’N4’ french PWR simulation: Inputs

Simulation of Double Chooz reactors: french PWR type ’N4’, 4.27 GWth

Geometry, initial materials, nuclear databases, power history and time steps

317 pellet/rod and
264 rods

205 assemblies

Core with different
enrichment zones

Jonathan Gaffiot on behalf of the Nucifer collaboration Nucifer Project: Full simulation scheme 5 / 27



Reactor simulation
Neutrino spectra simulation

Detector simulation
Expected sensitivity and conclusions

MCNP Utility for Reactor Evolution
A ’N4’ french PWR simulation: Inputs
A ’N4’ french PWR simulation: Outputs
Validation and non proliferation studies

A ’N4’ french PWR simulation: Outputs

Fuel inventory, reaction rates, neutron flux, keff. . . at each time step
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Validation and non proliferation studies

Validation

NEA benchmark:
4 Westinghouse assemblies

NEA benchmark:
Quarter core Westinghouse

(N. Capellan PhD thesis)

Independent NEA benchmarks and
sentivity studies [1]

Comparison with deterministic codes
APOLLO2 and DRAGON

Non proliferation scenarii studies [2, 3]

Osiris Candu VHTR
(V. M. Bui PhD thesis) (S. Cormon PhD thesis)
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The difficulty: convert electron spectra to neutrino spectra

β decay: measurable electron energy, need to deduce neutrino energy

Single β branch: direct relation between neutrino and electron energy

Spectrum of a nucleus: superposition of many β branches

Spectrum of a reactor: superposition of hundreds of fission products, i.e.
thousands of β branches, and still unknown nuclei and branches
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Historical approach for spectrum conversion

e−: accurate measurement of total spectra for each isotopes of interest

Fit of these spectra with some tens of effective branches

ν̄: converted virtual spectra from these effective branches

Reference for all neutrino experiment: ILL e− measurement @ 3%(1980s), and
spectra conversion, see [4, 5, 6]
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The microscopical approach

Today in nuclear
databases (JEFF,
JENDL, ENDF)

1 More than 700 fission
products

2 More than 10000 β
branches

3 Effective models for
unknown nuclei

No free parameter

Not precise enough in
norm: 5-10% with e−
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BESTIOLE: a new code to simulate neutrino spectra

Mixing the two approaches

1 ∼ 90% of physical
branches from nuclear
databases

2 Match residues with
effective branches

3 Reverse real and effective
branches to obtain
neutrino spectra

 kinetic energy (MeV)β
2 3 4 5 6 7 8

pr
ed

ic
tio

n 
/ d

at
a

0

0.2

0.4

0.6

0.8

1

Built

Fitted

BESTIOLE: a new C++ code (Th. A. Mueller Ph.D. thesis)

Inputs: standard nuclear databases (ENSDF format) and fission rates

Simulate neutrino spectra for each fission product and each fissile isotopes

Intrinsic error propagation with calculation of covariance matrix
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BESTIOLE’s results

Systematic 3% shift between historical and BESTIOLE spectra
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To be submitted to Phys. Rev. C.
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GEANT4 simulation of the detector

High fidelity description [7]

Simulation of scintillation with dedicated model and fine liquid properties

Multiple measurements of optical properties of detector components

Intrinsic digitization of collected photons on simulated photomultipliers

Output: ROOT files with the same format than experimental data

Benefits from Double Chooz developments
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Calibration: simulation and detector

Shallow depth laboratory + No shielding → Background rate of several kBq
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Fighting correlated backgrounds

Pulse Shape Discrimination

Due to mass difference, α, p and e− have different ionising density

Light emission is then a bit quicker with e− than ion

Pulse Shape Discrimination can be used to discriminate particles

The experiment: introduction of 222Rn in Nucifer

Among 222Rn daughters, 214Bi decays β− on 214Po
214Po is α emitter with half-life 164 µs

Time correlation + 2 different particles: Bi/Po decays mimic a ν̄ signal
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The results of the experiment

Comparison simulation/experiment
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Expected sensitivity and count rate

At power plant: 25 m from reactor core of constant power 3.3 GWth

Detector: 0.8 m3 of liquid with 50% efficiency

A point with 1% statistical error each 3 days

Sensitivity to ∼ 55 kg of plutonium
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Conclusions and perspectives

A full simulation scheme from reactor to detector

Inputs: Standard databases, geometrical properties and history of thermal power

Outputs: Direct comparison with experimental data

Many new developements: evolutionnary Monte-Carlo for reactor simulation,
improvement of ν̄ spectra, detector simulated from scintillation to digitization

Non proliferation scenario studies with Nucifer on power and research reactors

Perspectives

Comparison of Osiris ν̄ spectra simulation with data

Fine tuning of GEANT4 simulation on final detector

Accurate non proliferation studies with final Nucifer performances
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Conversion procedure

1 Fit of the measured spectrum’s tail with an effective branch

2 Substraction of the branch

3 Iteration ∼ 30 times
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Main corrections brought by MURE

Out equilibrium
spectra: long-lived
fission products

Neutron capture on
fission products

Shape of neutron
flux (axial offset,
pilot rods. . . )
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Noise simulations

Noise measurement with HPGe as input to simulation
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