Undeclared nuclear activity monitoring

Romain Reboulleau & Thierry Lasserre & Guillaume Mention

CEA Saclay/DSM/IRFU/SPP - École Polytechnique (ParisTech)

2010.08.03

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Regular reactor background Rogue activity detection Detection sensibility Localisation

2 Regular reactor background

- 3 Rogue activity detection
- 4 Detection sensibility

イロト イポト イヨト イヨト

Regular reactor background Rogue activity detection Detection sensibility Localisation

Introduction

Purpose

• Coast monitoring \rightarrow rogue activity detection

Regular reactor background Rogue activity detection Detection sensibility Localisation

Introduction

Purpose

- Coast monitoring \rightarrow rogue activity detection
- Rogue reactor location

Regular reactor background Rogue activity detection Detection sensibility Localisation

Introduction

Purpose

- Coast monitoring \rightarrow rogue activity detection
- Rogue reactor location
- Constraints : distances, detector position, regular reactor background, etc.

Antineutrino creatior Europe map Simulation

Outline

- Antineutrino creation
- Europe map
- Simulation

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Antineutrino creation Europe map Simulation

Regular reactor background

Antineutrino creation

Creation rate

- 1 GW_{th} \leftrightarrow 1.9 \times 10²⁰ $\overline{\nu}_{e}$ /s
- World power reactors create 2.1 $\times 10^{23} \overline{v}_e/s$

Induced background

1 year monitoring with a 10^{34} protons LS detector observes 150 events in the best case. Can rise up to a few 10^4 events. Non-reactor background are not accounted for.

Antineutrino creation Europe map Simulation

Regular reactor background

Romain Reboulleau

Undeclared nuclear activity monitoring

Antineutrino creation Europe map Simulation

Regular reactor background

Data

- 192 nuclear power stations
- Standard core composition (52% ²³⁵U, 34% ²³⁹Pu)
- Average load factor (world mean : 0.8)

Simulation

- Simulation code from Saclay
- Neutrino oscillation included, with standard parameters

Outline

2 Regular reactor background

Rogue activity detection

- Assumptions
- Likelihood ratio method
- Monte Carlo simulation
- Detection criterion

Assumptions Likelihood ratio method Monte Carlo simulation Detection criterion

Rogue activity detection

Assumptions

Assumptions

- Rogue power P = 100 MW 2 GW (classic : 500 MW)
- Exposure time T = 1 month 2 years (classic : 3 months)
- Detector size N = 10^{33} few 10^{34} protons (classic : 10^{34})
- Luminosity = PTN ($10^2 10^5$ rnu) (classic : 1250 rnu)
- Detector in an oil tanker, moving in the oceans
- Actual number of events in detector follows a Poisson law, λ = theoretical number of events.

Assumptions Likelihood ratio method Monte Carlo simulation Detection criterion

Rogue activity detection

Likelihood ratio method

Method

- Data set n, theoretical value without rogue activity b
- Fitness probability : $p = \frac{L(b,n)}{L(b,b)}$
- L = likelihood function
- $L_{poisson}(b,n) = -b + n \times log(b) log(\Gamma(n+1))$
- We take this value to detect rogue activity presence

イロト イポト イヨト イヨト

Assumptions Likelihood ratio method Monte Carlo simulation Detection criterion

Rogue activity detection

Monte Carlo simulation

FIGURE: Monte Carlo simulation of likelihood ratio. Total experiment = 3000 rnu (10^{34} protons, 300 MW), distance = 300 km, low background

Assumptions Likelihood ratio method Monte Carlo simulation Detection criterion

Rogue activity detection

Detection criterion

Chosen arbitrary criterion

- False alarm is set to 10%
- 90% probability
- ullet \to Likelihood ratio > 90% in at least 90% cases

イロト イポト イヨト イヨト

Simulation Detection distance Detection law

Outline

Regular reactor background

3 Rogue activity detection

Detection sensibility

- Simulation
- Detection distance
- Detection law

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Simulation Detection distance Detection law

Detection sensibility

Simulation

Simulation parameters

- 1 detector in a given luminosity \mathcal{L}
- Reactors randomly placed around the detector
- For each reactor, likelihood ratio method is applied
- We assume the reactor is detected when detection follows the previous criterion

Simulation Detection distance Detection law

Detection sensibility

Simulation

FIGURE: Detection sensibility for 5000 rnu luminosity.

< ∃→

Simulation Detection distance Detection law

Detection sensibility

Detection distance

FIGURE: Detection distance for high, medium, and low background cases.

イロト イポト イヨト イヨト

Simulation Detection distance Detection law

Detection sensibility

Detection law

FIGURE: Detection distance as a function of luminosity and background level.

イロト イポト イヨト イヨト

Outline

Introduction

- Regular reactor background
- 3 Rogue activity detection
- 4 Detection sensibility

- 5 Localisation
 - Principle
 - Algorithm
 - 1st example
 - 2nd example

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Principle Algorithm 1st exam

Localisation

Principle

Localisation steps

- Detectors patrol around the world. One of them detects a rogue activity.
- Several detectors move towards the area, and take data to determine a more accurate area to monitor.
- Oetectors get closer to accurately monitor the area, and give a possible location of the rogue reactor.

kground letection ensibility

Localisation

Principle

Localisation steps

- Detectors patrol around the world. One of them detects a rogue activity.
- Several detectors move towards the area, and take data to determine a more accurate area to monitor.
- Oetectors get closer to accurately monitor the area, and give a possible location of the rogue reactor.

Principle Algorithm 1st examp

Localisation

Principle

Localisation steps

- Detectors patrol around the world. One of them detects a rogue activity.
- Several detectors move towards the area, and take data to determine a more accurate area to monitor.
- Oetectors get closer to accurately monitor the area, and give a possible location of the rogue reactor.

Localisation

Principle

Localisation steps

Detectors patrol around the world. One of them detects a rogue activity.

Principle

- Several detectors move towards the area, and take data to determine a more accurate area to monitor.
- Oetectors get closer to accurately monitor the area, and give a possible location of the rogue reactor.

on Principle nd Algorithm on 1st exam ity 2nd exam

Localisation

Principle

Localisation steps

- Detectors patrol around the world. One of them detects a rogue activity.
- Several detectors move towards the area, and take data to determine a more accurate area to monitor.
- Oetectors get closer to accurately monitor the area, and give a possible location of the rogue reactor.

Principle Algorithm 1st example 2nd example

Localisation

Algorithm

SNIF algorithm (single data set)

- SNIF maps the area with potential reactors, and reiterates around the 5 best fits of the previous mapping.
- We obtain a potential location, around which we draw confidence level contours

Localisation

Once user is convinced there is a rogue activity, SNIF is used for first and second localisation monitoring.

Principle Algorithm 1st example 2nd example

Examples

Examples

Disclaimer

These examples are arbitrary examples and were chosen for their pedagogic parameters.

<ロト < 四ト < 回ト < 回ト

Principle Algorithm 1st example 2nd example

Example 1 : West Africa.

- Low background
- 600 MW
- 10³⁴ protons / detector

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Principle Algorithm 1st example 2nd example

Localisation

FIGURE: Rogue activity likelihood through time. 350 km - 6000 rnu/yr

<ロト < 四ト < 回ト < 回ト

Principle Algorithm 1st example 2nd example

Localisation 1st example - Second step

<ロト < 四ト < 回ト < 回ト

Principle Algorithm 1st example 2nd example

Localisation 1st example - Second step

Detector	Events	BG(th)	R(th)	CL
1	233	226.26	6.52	0.11
2	257	217.59	37.93	0.97
3	232	227.19	16.89	0.06
4	228	239.68	6.75	0.23

æ

ヘロト 人間 とくほ とくほど

Principle Algorithm 1st example 2nd example

Localisation 1st example - Third step

<ロト < 四ト < 回ト < 回ト

Principle Algorithm 1st example 2nd example

Localisation 1st example - Third step

Detector	Events	BG(th)	R(th)	CL
1	500	442.2532	32.79	0.97
2	501	440.93	51.73	0.98
3	564	454.91	112.78	1
4	512	453.92	83.86	0.97

æ

ヘロト 人間 とくほ とくほど

Principle Algorithm 1st example 2nd example

Example 2 : Sri Lanka.

- Medium background
- 500 MW
- 10³⁴ protons / detector

Principle Algorithm 1st example 2nd example

Localisation 2nd example - First step

FIGURE: Rogue activity likelihood through time. 250 km - 5000 rnu/yr

<ロト < 四ト < 回ト < 回ト

Principle Algorithm 1st example 2nd example

Localisation 2nd example - Second step

FIGURE: 6 months observation

Principle Algorithm 1st example 2nd example

Localisation 2nd example - Second step

Detector	Events	BG(th)	R(th)	CL
1	329	272.75	66.39	1.0
2	364	239.57	52.52	1.0
3	433	226.34	200.61	1.0
4	304	211.79	84.90	1.0

æ

ヘロト 人間 とくほ とくほど

Principle Algorithm 1st example 2nd example

Localisation 2nd example - Third step

<ロト < 四ト < 回ト < 回ト

Principle Algorithm 1st example 2nd example

Localisation 2nd example - Third step

Detector	Events	BG(th)	R(th)	CL
1	790	468.18	340.16	1.0
2	21	424.39	364.57	1.0
3	934	439.81	574.27	1.0
4	913	499.19	424.62	1.0

æ

ヘロト 人間 とくほ とくほど

Principle Algorithm 1st example 2nd example

Outlook

- Detection distance : few 100 km for 5000 rnu
- 1 detector gives good confidence after a few months
- Localisation possible but not always accurate
- Regular reactor background influence
- We are working on detector background handling, and design

Principle Algorithm 1st example 2nd example

Thank you for listening

イロト イポト イヨト イヨト

Romain Reboulleau Undeclared nuclear activity monitoring