Lawrence Livermore National Laboratory

LLNL/SNL Scintillator Detector Development

N. Bowden, A. Bernstein, S. Dazeley, G. Keefer Lawrence Livermore National Laboratory D. Reyna, B. Cabrera-Palmer, S. Kiff, J. Lund Sandia National Laboratories

LLNL-PRES-422580

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

IAEA Topics of Interest

LLNL-PRES-422580

The Signal: Inverse Beta Decay

Cosmogenic Neutron Background:

Aboveground Detection will require: 1) Signal vs. Background discrimination
2) Background insensitivity

Candidate Particle ID technologies

Inorganic Neutron Capture Scintillator (Li₆ Gd(BO₃)₃:Ce) grains mixed with Plastic Scintillator

Crystal index is well matched to that of plastic

Neutron captures on ⁶Li and ¹⁰B are bright and distinct via PSD (Li especially, ~2.5 MeVee)

Fairly efficient neutron capture: Esc.: H :Gd :B :Li (1% b.w. crystal loading) 13%: 12% :43% :21% :11%

But, current manufacturing technique yields poor optical properties: effective optical attenuation length is only ~ 20cm. Have successfully tested 40cm detector

Currently, rather expensive (\$2/cm³)

We continue to investigate improvements to the production technique. New inorganic scintillators that contain only Li also warrent consideration.

ZnS:Ag/⁶LiF:

An inorganic scintillator mixed with a neutron capture agent

- ZnS:Ag is a polycrystalline inorganic crystal scintillator
 - Reduced quenching of heavy ion depositions from ⁶Li neutron captures
 - Time constant is long (~200 ns), allowing good PSD
 - Fairly easy to obtain, since widely used in neutron radiography
 - *BUT*:
 - ZnS:Ag is not transparent to its own scintillation light so only thin layers can be used, and it is a poor optical reflector
 - The inhomogeneous mixture of Li and scintillator means that not all of the energy of the capture reaction is lost in scintillator

• Three configurations studied:

LiZnS sheets grease coupled to plastic scintillator bar (5cm x 5cm x 50cm) LiZnS sheets immersed in a liquid scintillator cell (5cm x 5cm x 50cm)

LiZnS sheets grease and air coupled to acrylic (to study optics) (12cm x 12cm x 50cm)

LiZnS in combination with organic scintillator clearly provides Particle ID capability

Good Neutron Capture Efficiency can be achieved

Two questions to address:

How often will a neutron capture on Li, in an inhomogeneous geometry? Via MCNP/GEANT4, 12cmx12cm organic scintillator bars coated with LiZnS yield ~70% Li capture efficiency $(\tau ~ 100\mu s)$

Large scale implementation is not straightforward

- Poor optical properties of LiZnS complicates implementation in long bars:
 - Direct coupling of LiZnS severely attenuates both ZnS and organic scintillation light as it propagates down a bar

 Indirect coupling of LiZnS (e.g. air gap) results in good organic collection, but poor collection of ZnS emissions. Light that enters the organic bar leaves after one pass, unless absorbed and re-emitted

Practical length limited to ~60 cm

Geometry to be implemented at SONGS

A future possibility? Single Crystal Organic Scintillators

New scintillator materials with triple pulse shape discrimination (PSD) of *electron*, *proton recoil* and *neutron capture* studied in solid and liquid states

New compounds are synthesized by incorporation of Li in earlier discovered scintillators with PSD

First crystals of the most efficient triple PSD materials grown at a small scale

Growth of larger crystals (10-cm scale) is planned for the next year

LLNL-PRES-422580

IAEA Topics of Interest

CANDU and Bulk Process Reactors (e.g. PBMR)

The daily movement of fuel bundles at a CANDU plant presents a safeguards challenge - item accountancy remains a primary strategy

Item accountancy is not possible on the "continuous" or finely divided fuel of a BPR – a Bulk Materials Accountancy approach will be necessary.

Loss of Continuity of Knowledge over the core contents would be difficult to recover

Pt. Lepreau CANDU6 Deployment

(in collaboration with AECL Chalk River)

- We have negotiated access to the Point Lepreau Generating Station (PLGS) CANDU6 reactor (2.2 GWth, 0.64GWe)
- Two potential deployment locations were identified:

	Location #1	Location #2
Distance from core	37m	75m
Depth below grade/ Overburden	6m ~10m.w.e.	15m ~10-30 m.w.e.
Access	Inside RCA, escort required at all times	Outside RCA, no escort
Contamination	20-5000uSv, large contribution from ⁶⁰ Co plated onto piping.	(none)
Reactor Correlated activities	D ₂ O processing	Turbine operation (ambient temperature)
Antineutrino flux relative to SONGS1	29%	8%

- To compensate for reduced flux, target will be 4m³ of BC-525 (0.1% Gd);
 - expect ~20% overall efficiency
 - Per m² of footprint, ~10x as efficient as SONGS1
- Double ended readout using 24x10" R7081 PMTs
 - Acrylic windows, sealed via PTFE encapsulated o-rings
- Optical coupling and hydrostatic support via mineral oil
- Shielding from 6 interlocking water tanks (0.5m) and 2.5cm Borated Poly.
- 5cm thick muon veto on 5 sides.

- To compensate for reduced flux, target will be 4m³ of BC-525 (0.1% Gd);
 - expect ~20% overall efficiency
 - Per m² of footprint, ~10x as efficient as SONGS1
- Double ended readout using 24x10" R7081 PMTs
 - Acrylic windows, sealed via PTFE encapsulated o-rings
- Optical coupling and hydrostatic support via mineral oil
- Shielding from 6 interlocking water tanks (0.5m) and 2.5cm Borated Poly.
- 5cm thick muon veto on 5 sides.

- To compensate for reduced flux, target will be 4m³ of BC-525 (0.1% Gd);
 - expect ~20% overall efficiency
 - Per m² of footprint, ~10x as efficient as SONGS1
- Double ended readout using 24x10" R7081 PMTs
 - Acrylic windows, sealed via PTFE encapsulated o-rings
- Optical coupling and hydrostatic support via mineral oil
- Shielding from 6 interlocking water tanks (0.5m) and 2.5cm Borated Poly.
- 5cm thick muon veto on 5 sides.

- To compensate for reduced flux, target will be 4m³ of BC-525 (0.1% Gd);
 - expect ~20% overall efficiency
 - Per m² of footprint, ~10x as efficient as SONGS1
- Double ended readout using 24x10" R7081 PMTs
 - Acrylic windows, sealed via PTFE encapsulated o-rings
- Optical coupling and hydrostatic support via mineral oil
- Shielding from 6 interlocking water tanks (0.5m) and 2.5cm Borated Poly.
- 5cm thick muon veto on 5 sides.

- To compensate for reduced flux, target will be 4m³ of BC-525 (0.1% Gd);
 - expect ~20% overall efficiency
 - Per m² of footprint, ~10x as efficient as SONGS1
- Double ended readout using 24x10" R7081 PMTs
 - Acrylic windows, sealed via PTFE encapsulated o-rings
- Optical coupling and hydrostatic support via mineral oil
- Shielding from 6 interlocking water tanks (0.5m) and 2.5cm Borated Poly.

• 5cm thick muon veto on 5 sides.

- To compensate for reduced flux, target will be 4m³ of BC-525 (0.1% Gd);
 - expect ~20% overall efficiency
 - Per m² of footprint, ~10x as efficient as SONGS1

0

Ø

 \mathcal{L}

8

ø

ø

Ø

Ø

2

10

- Double ended readout using 24x10" R7081 PMTs
 - Acrylic windows, sealed via PTFE encapsulated o-rings
- Optical coupling and hydrostatic support via mineral oil
- Shielding from 6 interlocking water tanks (0.5m) and 2.5cm Borated Poly.

5cm thick muon veto on 5 sides.

- To compensate for reduced flux, target will be 4m³ of BC-525 (0.1% Gd);
 - expect ~20% overall efficiency
 - Per m² of footprint, ~10x as efficient as SONGS1
- Double ended readout using 24x10" R7081 PMTs
 - Acrylic windows, sealed via PTFE encapsulated o-rings
- Optical coupling and hydrostatic support via mineral oil
- Shielding from 6 interlocking water tanks (0.5m) and 2.5cm Borated Poly.

5cm thick muon veto on 5 sides.

Prototyping, Regulation, Schedule

- A long term (1 year+) mechanical test of a double window cell has been conducting using SONGS1 BC525 liquid scintillator
- To be able to deploy at PLGS we have been required to perform:
 - Comprehensive Fire Safety Analysis
 - Minor recommendations included installation of local detection and fire retardant wrapping of cables above detector location
 - Third Party Review of Mechanical Design
- Upon completion of Mechanical Review, construction can begin
- Assembly and testing at Livermore late summer/fall
- Deployment Winter 2010-2011

Double ended cell, water leak test

Double ended cell, BC525, immersed in mineral oil

LLNL-PRES-42258

Expected Observation

- PLGS is currently being refurbished. For only the second (and likely last) time, it will have a fresh core load at restart
- Online refueling will begin at about FPD75; we expect to observe the evolution of the fuel burnup to the equilibrium condition.

Expected Observation

- PLGS is currently being refurbished. For only the second (and likely last) time, it will have a fresh core load at restart
- Online refueling will begin at about FPD75; we expect to observe the evolution of the fuel burnup to the equilibrium condition.

Conclusions

- Inorganic Li or B bearing scintillators can provide neutron capture ID, strongly suppressing much correlated and most uncorrelated background.
- These can be combined with organics to provide an antineutrino target and positron detection, but scaling up to cubic meter size is not straightforward.
- Online refueled and Bulk Process Reactors present distinct safeguards challenges – antineutrino detection could provide a unique capability to track the core loading of these types.
- A detector will be deployed at a CANDU plant to observe the fuel evolution at fresh startup and operation at equilibrium thereafter.

