Study of plastic scintillator based reactor neutrino detector

AAP 2010 meeting @ Tohoku Aug. 02-05 2010 H. Ono (Nippon Dental Univ.) H. Miyata, K. Takahashi (Niigata Univ.)

Reactor monitoring system

- Nuclear power plant (1GW electric power) produces about 10¹⁹ anti-neutrinos/s.
- ~5000 neutrinos/day will be observed with 1ton (1m³) detector <u>placed very closely (20m) to the reactor core</u> \rightarrow Possibility to monitor the reactor power output with anti-neutrino at the ground

235

n

Need to consider the <u>reactor safety</u> to place the detector very closely to the core.

Detector components should be considered carefully

Study of the Plastic Scintillator based Reactor Neutrino Detector \mathcal{V}_{a}

⁴⁰Te

e

Reactor monitor material

Flammable oil base

Common reactor neutrino detector is based on the <u>liquid scintillator</u> to achieve the large volume as neutrino target (ex. KamLand, DC)

From a safety point of view, **liquid scintillator based detector** has difficulty to place **closely to the reactor core** (or even in the nuclear power plant)

Flame-resistant, Solid

<u>Plastic scintillator</u> is based on the frame-resistant solid material \rightarrow Remain a possibility to place the detectors closely to the reactor

By using plastic scintillator based reactor monitor

- Large neutrino flux gain to place closely with fire safety.
 →Possibility to measure at the ground level
- Need to keep compact size to place closely and cost issue
- \rightarrow Use gadolinium to achieve better neutron capture efficiency

Gadolinium doped neutrino detector

Detection method : Neutrino inverse β **decay** $[\frac{\nu_e + p \rightarrow e^+ + n}{Gadolinium (Gd)}]$ has largest cross section for the **thermal neutron**

Gd Advantage : Shorter neutron capture time, large E_{γ} output

Many experiments adopt the Gd doped liquid scintillator as neutrino target No commercial Gd loaded plastic scintillator exists for now!

Study of the Plastic Scintillator based Reactor Neutrino Detector

Design of reactor neutrino monitor

Prototype detector development

- Gd loaded plastic scintillator detector (Rod type)
 - Test sample of Gd loaded plastic scintillator produced by company.
- Layer aligned detector (Layer type)
 - Plastic scintillator and Gd painted sheet are aligned alternately.

Each prototype detector is tested with Pseudo neutrino event by ²⁴¹Am/Be neutron source

Evaluate the Gd effect with neutron capture time $\boldsymbol{\tau}$

Gd loaded plastic scintillator prototype (Rod type)

Gd loaded detector setup

Attenuation length measurement

Study of the Plastic Scintillator based Reactor Neutrino Detector

Calibration with 60 Co γ -ray source

Energy calibration of the detector is performed with 60 Co (E_y=1.1, 1.3 MeV, mean=1.25 MeV) γ -ray source

Because of the small detector size, γ -rays escape from the detector

γ-rays energy distribution forms Compton scattering edge

Use Compton edge as energy calibration corresponds to $E\gamma$ =1.25 MeV

Compton edge is defined by fitting with Error function $f = p_0 \operatorname{Erf}(p_1(x - p_{edge})) + p_2$

Pseudo neutrino event with ²⁴¹Am/Be

Faster neutron capture time will be achieved with Gd loaded plastic scintillator → Compare with no-dope plastic scintillator

Neutron capture (liquid scinti.) Gd doped $(0.1\%/W) \tau \sim 30\mu s$ No Gd dope $\tau \sim 180\mu s$

Ref : Chooz experiment (Eur. Phys. J. C 27, 331–374 (2003))

Data taking time chart

Time difference between the prompt and delayed signal (Δt) is recorded by TDC with 50µs time window (programmed)

Delayed coincidence data taking logic

Reactor Neutrino Detector

Comparison of neutron capture time

Mean neutron capture time (τ) is obtained from the time difference between prompt and delayed signal (Δt) 24h comparison

Neutron capture time becomes shorter by doping Gd τ =31.5±0.7 Pseudo neutrino event can be observed by Gd doped scintillator

Layer aligned prototype detector (Layer type)

Layer aligned prototype

Sandwich structure of plastic scintillator+Gd paint sheet Gd painted sheet : 0.1 mm-thick Plastic scintillator : 2mm-thick x 2 layers

²⁴¹Am/Be Pseudo event measurement

PMT HV = -2350V calibrated with Co gamma-ray signal threshold_(Prompt, Delayed) = (-30mV, -60mV) Measurement time: 12h

Mean neutron capture time

2010. Aug. 5th

Study of the Plastic Scintillator based Reactor Neutrino Detector

Gd content fraction effect

To check the effect of Gd fraction to the neutron capture time, several Gd fraction samples are prepared

Dependence of Gd content fraction S/N(N_{Signal}/N_{background}) Gd fraction (%/W) dependence (sn) 250 50 Detection efficiency will be Ч saturated around here Neutron capture time 40 200 30 Ο 20 Ο 150 0 O 10 100 0.5 1.5 0 -0.5 Gd [%/W] Mean capture time becomes 50 O shorter with increasing Gd fraction Dependence of Gd fraction is -0.5 0.5 1.5 0 observed experimentally. Gd (%/W) Need to confirm with simulation : next step

Conclusion and next steps

Conclusion

Two types of plastic scintillator based neutrino detectors are tested with ²⁴¹Am/Be pseudo neutrino event

- Neutron capture signals are observed with both prototype.
- Gd fraction dependence can be observed.

Next steps

- Geant4 simulation should be applied to confirm the effect of Gd fraction dependence.
- Upgrade the detector size
 - Upgrade prototype size with 2mm thick legacy scintillators.
 - Gd doped plastic scintillator has tried to produce by Philippine's collaborator.
 - Hopefully produce much cheaper price in Philippine

2010. Aug. 5th

Study of the Plastic Scintillator based Reactor Neutrino Detector

Future view for the large detector

Plastic scintillator is manufactured in laboratory Philippines collaborator try to make Gd/Boron loaded plastic scintillator

Base materials of scintillator

- Polystyrene pellet
- PPO (1st wave length shifter)
- POPOP (2nd wave length shifter)

Further more,

<u>Gadolinium or Boron</u> will be doped for efficient neutron detection scintillator

Mix all the materials and stair on the hot plate Melt around 300°C then slowly cool down

Test samples made in Lab.

Large amount of plastic scintillator might be produced in Philippines much cheaper price.

Reactor neutrino detection method

Amount of anti neutrinos are produced from nuclear fission in reactor Neutrino detection : **Inverse beta decay** in scintillator detector

Coincidence of **prompt** and **delayed** signal makes drastic background reduction

Energy distribution (Prompt, Delayed)

⁶⁰Co gamma-ray energy distribution

Energy distribution with Gd fraction

Study of the Plastic Scintillator based Reactor Neutrino Detector

Stability check with energy cut

Time difference Δt distribution

Delayed coincidence test setup

- Use VME multi-hit TDC and ADCs are used for the delayed coincidence measurement
- 16 ch multi-hit TDC (CAEN V1290N)
 - $-51.2 \ \mu s$ dynamic range
 - Multi-hit event can be recorded
- 16 ch CS ADC (REPIC RPV-171)

 12bit (1000pC/4096 count=0.25 pC/count)