Status of DoubleChooz

F.Suekane RCNS Tohoku University

I borrowed the presentation slides from Ishitsuka's ICHEP talk.

The Double Chooz reactor neutrino experiment

Masaki Ishitsuka, Tokyo Institute of Technology on behalf of the Double Chooz collaboration

35th International Conference of High Energy Physics July 22-28, 2010, Paris

Physics motivations

- \bullet θ_{13} is the last unknown mixing angle
 - Neutrino oscillations are fairly confirmed.
 - Two oscillation modes with different Δm^2 scales: $\Delta m_{21}^2 \sim 7.6 \times 10^{-5} \text{eV}^2$, $|\Delta m_{32}^2| \sim |\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{eV}^2$
 - Two large mixing angles: $\theta_{12}^{\circ} \sim 34^{\circ}$, $\theta_{23}^{\circ} \sim 45^{\circ}$
 - Only the limit is set to θ_{13} : θ_{13} <12°

- Exciting topics are waiting for the value of θ_{13}
 - \bullet δ_{CP} in neutrino sector (super beam, v-Fact, β beam...)
 - Mass hierarchy of neutrinos

Measurement of θ_{13} is essential.

Search for θ_{13} using reactor neutrinos

$$P\left[\overline{v_e} \to \overline{v_e}\right] \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$$

- Simple 2 flavor oscillation formula is valid at 1km baseline
 - $P(v_e \rightarrow v_e)$ as a function of Δm_{31}^2 (well known) and θ_{13} (unknown)
 - Matter effects are negligible
 - Independent to CP-violation phase
- \Rightarrow Clean measurement of θ_{13}

Strategy

$$P\left[\overline{v_e} \to \overline{v_e}\right] \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$$

Systematic errors on

- neutrino flux
- interaction x-sec
- # of target protons
- detection efficiency are canceled by two detectors technique.

Chooz Reactors 4.27GW_{th} x 2 cores

Near Detector <L> 400m 400v/day 120m.w.e. Early 2012

Far Detector <L> 1050m 70v/day 300m.w.e. Sept. 2010

Strategy

$$P\left[\overline{v_e} \to \overline{v_e}\right] \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$$

DC far/near ratio (3years)

Chooz Reactors 4.27GW_{th} x 2 cores

Near Detector <L> 400m 400v/day 120m.w.e. Early 2012

Far Detector <L> 1050m 70v/day 300m.w.e. Sept. 2010

Double Chooz experiment

Double Chooz collaboration

Brazil

CBPF UNICAMP UFABC

France

CEA/DSM/IRFU: SPP SPhN SEDU SIS

SENAC CNRS/IN2P3: APC

Subatech IPHC ULB

Germany

EKU Tübingen MPIK Heidelber TU München U. Aachen U. Hamburg

Japan

Tohoku U.
Tokyo Inst. Tech.
Tokyo Metro. U.
Niigata U.
Kobe U.
Tohoku Gakuin U.

Hiroshima Inst

Tech.

Russia

INR RAS IPC RAS RRC Kurchatov

Spain

CIEMAT-Madrid

UK

Sussex

USA

U. Alabama ANL

U. Chicago Columbia U.

UCDavis Drexel U.

IIT KSU

LLNL

MIT

U. Notre Dame Sandia National Laboratories

U. Tennessee

Web Site: www.doublechooz.org/

Neutrino signal and backgrounds

Neutrino signal

Background

Double Chooz detector

Outer Veto (Plastic scint.)

• Identification of cosmic-ray μ

Inner Veto (90m³ Liquid scint.&78 PMTs)

• Detection of cosmic-ray μ and fast neutrons

Steel vessel & PMT support structure

Buffer (110m³ Mineral oil & 390 PMT's)

 Reduction of fast neutron and environmental γ from outside

- Acrylic vessel

y-catcher (22.3m³ Liquid scintillator)

• Measurement of γ 's from n-capture by Gd in target volume

v-target

(10.3m³ Gd loaded (1g/l) liquid scint.)

Target for neutrino signals

Statistic and systematic errors

		CHOOZ	Double Chooz
Reactor (neutrino flux)	Production x-sec	1.9%	-
	Reactor power	0.7%	-
	Energy per fission	0.6%	-
	Solid angle	-	0.1%
Detector	Detection x-sec	0.3%	-
	Target mass	0.3%	0.2%
	Fiducial volume	0.2%	-
	H/C ratio	0.8%	-
	Dead time	0.25%	-
Analysis	Selection efficiency	1.4%	0.4%
Total systematic error		2.7% —	→ <0.5%
Statistical error		2.8% —	→ <0.5%

G. Mention et al., arXiv:0704.0498 [hep-ex]

Installation of acrylic vessel

... and the first PMT signal readout by FADC

Schedule

- Far detector construction completed.
- Liquid scintillator filling starts soon.
- Far detector commissioning in September 2010.
- Near detector:
 - Digging from November 2010
 - ND lab available in fall 2011
 - Data taking in 2012

Sensitivity to θ_{13}

Current limit set by CHOOZ:

$$\sin^2 2\theta_{13} < 0.15$$
 $(\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2)$

"1- σ hint" of non-zero θ_{13} from Solar+KamLAND global analysis:

$$\sin^2 2\theta_{13} = 0.08^{+0.08}_{-0.07}$$

B. Aharmim et al (SNO collaboration) Phys.Rev.C81:055504,2010

- Far detector commissioning in September 2010.
 - \Rightarrow Sensitivity reaches $\sin^2 2\theta_{13} \sim 0.06$ (90% C.L.) in 1.5 years
- Near detector operation in 2012.
 - \Rightarrow Sensitivity reaches $\sin^2 2\theta_{13} \sim 0.03$ (90% C.L.) in +3 years

Reasonable chance to make the measurement of non-zero θ_{13} in a few years

Conclusion

- Double Chooz far detector is about to start data taking.
 - Detector construction completed.
 - First PMT signals observed by DAQ with all PMTs on.
 - Liquid scintillator filling starts soon.
 - Detector commissioning in September 2010.
- Near detector data taking expected from 2012.
- Prospects of θ_{13} measurement.
 - September 2010: Far detector only
 - $\Rightarrow \sin^2 2\theta_{13} \sim 0.06 (90\% \text{ C.L.}) \text{ in } 1.5 \text{ years}$
 - 2012: Near and far detectors
 - $\Rightarrow \sin^2 2\theta_{13} \sim 0.03 \ (90\% \ \text{C.L.}) \ \text{in } +3 \ \text{years}$
 - (Current limit: $\sin^2 2\theta_{13} < 0.15$ by CHOOZ)

Two approaches to search for θ_{13}

Reactor neutrino: **Double Chooz**, Daya-Bay, RENO...

$$P\left[\overline{v_e} \to \overline{v_e}\right] \cong 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$$

■ Sensitive to θ_{13} . (=> clean measurement)

$$a(x) = \sqrt{2}G_F N_e(x)$$
$$J_r = c_{12}s_{12}c_{13}^2s_{13}c_{23}s_{23}$$

Long-baseline with v_{μ} beam: T2K, NOvA ...

$$\begin{split} P\Big[v_{\mu}(\overline{v_{\mu}}) \to v_{e}(\overline{v_{e}})\Big] &= \sin^{2}2\theta_{13} s_{23}^{2} \sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) - \frac{1}{2} s_{12}^{2} \sin^{2}2\theta_{13} s_{23}^{2} \left(\frac{\Delta m_{21}^{2}L}{2E}\right) \sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right) \\ &+ 2 J_{r} \cos\delta\left(\frac{\Delta m_{21}^{2}L}{2E}\right) \sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right) \mp 4 J_{r} \sin\delta\left(\frac{\Delta m_{21}^{2}L}{2E}\right) \sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \\ &\pm \cos2\theta_{13} \sin^{2}2\theta_{13} s_{23}^{2} \left(\frac{4Ea(x)}{\Delta m_{31}^{2}}\right) \sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \\ &\mp \frac{a(x)L}{2} \sin^{2}2\theta_{13} \cos2\theta_{13} s_{23}^{2} \sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right) + c_{23}^{2} \sin^{2}2\theta_{12} \left(\frac{\Delta m_{21}^{2}L}{4E}\right)^{2} \end{split}$$

- \bullet ₁₃, δ _{CP}, mass hierarchy and θ ₂₃ (=> parameters degeneracy).
- Matter effects.
- Neutrino and anti-neutrino running.

Gd-loaded liquid scintillator

Attenuation length vs. wavelength vs. time

Long term test \Rightarrow stable over >2 years

Readout

ID & IV readout

PMT

ID: 10" x 390PMTs

(Hamamatsu R7081 MOD (low-BG for DC))

IV: 8" x 78PMTs (Hamamatsu R1408)

Trigger pattern & clock (T=16ns)

+ OV readout (Hamamatsu M64 + Maroc2-chip)

Calibration

- PMT/Electronics gain, timing
- Liquid scintillator optics
- Stability
 - LED light injection (embedded)
 - Isotropic laser and LED (deployed)
- Energy scale
 - Radioactive sources (¹³7Cs, ²²Na, ⁶ºCo, ⁴ºK, etc.)
 - H-capture peak at 2.2MeV
- Efficiency (n capture on Gd)
 - ²⁵²Cf, Am-Be neutron sources
- Position dependence by deployment systems
 - Along Z-axis
 - 3D spatial calibration by articulated arm
 - Tube+wire in γ-catchaer and buffer regions

