# Geo-Neutrino Measurement with KamLAND

AAP2010 conference in Sendai, 05 Aug. 2010 Haruo Ikeda Research Center for Neutrino Science, Tohoku University

Contents KamLAND Experiment Geo-neutrino Observation in KamLAND Directional Measurement of Anti-neutrino Detection

# KamLAND Experiment

# KamLAND Experiment



#### Reactor neutrino

Geo-neutrino

Electron anti-neutrino detection via inverse beta decay process  $\overline{v}e + p \rightarrow e^+ + n$ 

Electron neutrino detection via electron scattering process  $v_e + e \rightarrow v_e + e$ 

KamLAND

, **\$** 



 $\mathbf{v}_{e}$ 



#### KamLAND Detector



#### **Detector Performance**

<sup>68</sup>Ge/<sup>60</sup>Co Energy time variation

<sup>12</sup>B N<sub>6</sub>m/N<sub>all</sub> time variation



# History of KamLAND



Construction

2000





Distillation

2002

Disappearance



#### **Spectral Distortion**

2005



**Precise Measurement** 

2<mark>008</mark>



## Geo-neutrino Observation in KamLAND

### Geo-Neutrino

Energy Budget of the Earth, Heat flow measurement : 44 TW Heat generation:

radiogenic  $\sim 20 \text{ TW}$ 

other sources (cooling of core, solidification of outer core...)

 ${}^{238}\text{U} \rightarrow {}^{206}\text{Pb} + 8\alpha + 6\text{e}^- + 6\bar{\nu}_{\text{e}} + 51.7 \,\text{MeV}$   ${}^{232}\text{Th} \rightarrow {}^{208}\text{Pb} + 6\alpha + 4\text{e}^- + 4\bar{\nu}_{\text{e}} + 42.7 \,\text{MeV}$   ${}^{40}\text{K} \rightarrow {}^{40}\text{Ca} + \text{e}^- + \bar{\nu}_{\text{e}} + 1.311 \,\text{MeV} \,(89.28\%)$   ${}^{40}\text{K} + \text{e}^- \rightarrow {}^{40}\text{Ar} + \nu_{\text{e}} + 1.505 \,\text{MeV} \,(10.72\%)$ 

Radiogenic heat source : U(8TW), Th(8TW), and K(4TW). [Bulk Silicate Earth (BSE) model]



1.5

2.0

Antineutrino energy, E<sub>v</sub> (MeV)

3.0

2.5

3.5

Cold L Plume Oceanic

Hot Spot

> Mid-Ocean Ridge

Crust

Continental

Crust

Direct exploration of the Earth's interior using neutrinos

 $10^{-2}$ 

0.5

1.0

# Upgrade from Nature paper

00



LS purification by 2 times distillation removed radioactive impurities, main  $\alpha$  source of <sup>210</sup>Po. <sup>13</sup>C( $\alpha$ ,n)<sup>16</sup>O background has been reduced.





4438.9 keV Y

E<sub>visible</sub> (MeV)

5

6

7

8

3

2

# Reactors and Backgrounds



#### **Observed Geo-neutrino**



# Number of U and Th Events



# Impact on Geology



For next stage, more statistics, other sites observation are important. Separation of geo-neutrino source (upper, lower mantle or crust) starts new era of geology. Directional measurement is useful.

# Directional Measurement of Anti-neutrino Detection

# How to

- Liquid scintillator upgrade. Neutron generated by inverse beta decay process has directional information of initial anti-neutrino. Capture it before diffusion.
  - ➡ <sup>6</sup>Li loaded liquid scintillator
- Vertex resolution of the detector. Imaging detector can detect a signal with high resolution (< 1cm).</li>
  - Imaging Intensifier and CCD



# Dissolve Li in LS

Li compound is insolvable in oil, solvable in water.

- 1. mix Pseudecumen + PPO + surfactant
- 2. mix Li compounds + pure water
- 3. mix 1 + 2

Surfactant : clear, colorless liquid at room temperature

Polyoxyethylen(10)Nonylephenyl Ether (POE)

Li compound: LiBr 186.8 [g/100g water]

Thermal neutron capture cross section of Br is small. (6.9 barn)



# Li Loaded LS

|         | Mixture<br>PC | ratio [%]<br>POE | <sup>nat</sup> Li[wt %]<br><sup>6</sup> Li[wt %] | Tranceparency<br>@400nm [cm] | light yield<br>KamLAND[%] |
|---------|---------------|------------------|--------------------------------------------------|------------------------------|---------------------------|
| Target  |               |                  | 2.0<br>0.15                                      | >70                          | >100                      |
| Natural | 50            | 50               | 1.04<br>0.078                                    | 64.6                         | $46.1 \pm 0.4$            |
| Enrich  | 80            | 20               | -<br>0.15                                        | 135                          | $122 \pm 0.8$             |

From accelerated test, we confirm more than 2 years stability in enriched case components, < 4months for natural case

< 4months for hatural c components.



# Neutron Capture of Cf Source



#### **5inch PMT**

**Detection method 1.** Fission  $\gamma$  using normal LS 2.  $\gamma$  or proton from neutron recoil in Li LS (prompt signal) 3. <sup>6</sup>Li capture signal in Li LS. (delayed signal)



# Imaging System

- Get event position with high resolution from images.
- Detection of weak scintillation light needs amplifier system and proper optics.
  Use Image Intensifier (I.I.) and CCD camera.
- Optics has incompatible parameters of Depth Of Field (DOF) and light collection power.







# Image Intensifier



Photo cathode is bialkali (Q.E. 22% @ 420nm) FOP transparency is 40% @ 420nm MCP gain  $10^3 \sim 10^5$ 

# Camera and Data Taking



exposure time

> 33µsec

pixel 640(W)x480(H)

CCD needs trigger signal to release the shutter, Use PMT signal

#### Image from LiLS



Catch comic ray muon images successfully. But can not find clear image of neutron capture signal. (5" PMT has a clear peak of neutron capture signal.)

We will prepare new I.I. and take images.

# Summary

- KamLAND observed geo-neutrino with lower systematic uncertainty.
- Geo neutrino measurement at other sites and directional detector will help to understand inside the Earth.
- <sup>6</sup>Li liquid scintillator and Imaging detector has a power to measure anti-neutrino direction.