

Double Chooz A Reactor θ 13 Experiment

M.Motoki Tohoku Univ.

On behalf of the Double Chooz Collaboration

- Reactor θ 13 measurement
- Description and Status of Double Chooz
- Expected schedule and sensitivities
- Summary

Best current limit is from CHOOZ

Only ran 199 days Total live time 341days (Reactor off: 142days)

@CHOOZ: R = 1.01 ± 2.8%(stat)±2.7%(syst)

Hep-ex/0301017

Collaboration

• Japan

- Tohoku U.
- Tokyo Metropolitan U.
- Niigata U.
- Tokyo Institute of Technology
- Kobe U.
- Tohoku Gakuin U.
- Miyagi University of Education
- Hiroshima Inst. of Technology

• USA

- Livermore nat lab
- Argonne
- Columbia U
- Chicago U
- Kansas U
- Notre Dame U
- Tennesse U
- Alabama U
- Drexel U
- Illinois Inst Tech

- France
 - Saclay
 - APC Laboratory
 - Subatech Nantes
- Germany
 - MPI Heidelberg
 - TU Munich
 - Hamburg U
 - Tubingen U
 - Aachen U
- Spain
 - CIEMAT Madrid
- England
 - Oxford U
 - Sussex U
- Russia
 - Kurchatov Inst
 - Sc. Acad.
- Brasil
 - CBPF
 - UNICAMP

Why "Double"?

Reactor induced systematics

2 detectors \rightarrow

<u>cancellation</u> of the reactor physical uncertainties

systematics	Error	CHOOZ	2 identical detector
	type		Low background
Reactor	Flux, cross section	1.9%	O(0.1%)
	Thermal power	0.7%	O(0.1%)
	E/Fission	0.6%	O(0.1%)
	Σ	2.1%	O(0.1%)

Detector induced systematics

systematics	Error type	CHOOZ	2 identical detector
			Low backgrounds
Detector	Scintillator density	0.3%	O(0.1%)
	H/C ratio & Gd concentration	1.2%	O(0.1%)
	Target weight	0.3%	0.2%
	« Spill in/out » effect	1.0%	O(0.1%)

M. Apollonio et. al., Eur.Phys.J. C27 (2003) 331-374

A single scintillator batch will be prepared to fill both detectors with the same apparatus

Far site

Integration to start early-2008

1.05 km 300 m.w.e 15 000 events/y

Near site

[Tunnel option] 400 m 120 m.w.e

> [Pit option] 310 m 80 m.w.e

150 000 events/y

0.4% statistical error (in 5 years)

Detector design

v detection at reactor experiments

Gd doped scintillator

• Solvent: 20% PXE(phenyl-xylyl ethane)- 80% Dodecane

• Gd loading: being developed @MPIK

- 0.1% Gd loading of Gd-BDK (Beta Diketonate)
- Long term Stability promising
- LY ~7000 ph/MeV: 6 g/l PPO + 50 mg/l Bis-MSB
- Attenuation length: 5-10 m meters at 420 nm
- Radiopurity \rightarrow U: 10⁻¹² g/g Th: 10⁻¹² g/g K: 10⁻⁹ g/g

MPIK new building for storage and purification of scintillators

UV-VIS-IR scintillator transmission

Gd(dpm)₃ dipivaloymethane

- Heidelberg MPIK \rightarrow Transition to industrial production of 100 kg of Gd \rightarrow Summer 2007
- On-site storage building *available* at Chooz → Upgrade will be done in 2007

PMT configuration

a candidate

(Option) LC(Light concentrator) [England]

Magnetic Shield Support Structure [Spain] High performance low background 10" PMT (Oil proof) [Japan]

Backgrounds

CHOOZ OFF data & Simulation (represent CHOOZ results well)

Accidental Background ✓Prompt Signal: radio activity dominated by PMTs (Rate=Rp) ✓Delayed Signal: Neutrons from cosmic μ spallation (Rate=Rd) ⇒ Accidental coincidence Rate = Rp x Rd x Δt

N_{bkg} = ~1.6 evts/day (Far) 2.3% of v signal = ~17 evts/day (Near) 1.7% of v signal

Correalated background

(cosmic μ induced)

- ✓ Fast Neutrons (recoil *p* and thermalized N)
- ✓ μ caputure
- ✓ Long-lived (9Li) β -(N)decaying isotopes

N_{bkg} = ~1.4 evts/day (Far) 2% of v signal = ~10 evts/day (Near) 0.9% of v signal

Double-Chooz Far Detector starts in 2008 Double-Chooz Near detector follows 16 months later

Conclusions & outlook

Double Chooz R&D's are in final stages & Detector Construction just started.

First data taking expected to start in 2008 with far detector only => $sin^2(2\theta_{13}) < 0.06$ in 1,5 year

civil engineering (pit cylinder)

In 2010 take data with both near and far detectors => $sin^2(2\theta_{13}) < 0.03$ in 3 years

We will know or set a strong limit on the size of θ_{13} within a few years & the neutrino oscillation studies will go in a new phase.